Transmission of 2.86 Tb/s data stream in
silicon subwavelength grating waveguides
GE GAO,
1
MING LUO,
2
XIANG LI,
2,3
YINGLU ZHANG,
1
QINGZHONG HUANG,
1
YI WANG,
1
XI XIAO,
2
QI YANG,
2
AND JINSONG XIA
1,4
1
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology,
Wuhan 430074, China
2
State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research
Institute of Post and Telecommunications, Wuhan 430074, China
3
lixiang@wri.com.cn
4
jsxia@hust.edu.cn
Abstract: In this paper, we perform an investigation of terabit-scale data transmission in
silicon subwavelength grating (SWG) waveguides for wavelength-division multiplexing
(WDM) optical signals. Silicon SWG waveguide is capable of decreasing the light
confinement in silicon core by engineering the geometry, leading to relatively lower optical
nonlinearity compared to silicon wire waveguide. We demonstrate ultrahigh-bandwidth 2.86
Tb/s data transmission through the fabricated 2-mm-long silicon SWG waveguide over a wide
range of launch powers. In the experiment, 75 WDM channels are utilized with each carrying
38.12 Gb/s orthogonal frequency-division multiplexing (OFDM) 16-ary quadrature amplitude
modulation (16-QAM) signal. With the benefit of efficient reduction on optical nonlinearity,
the optimum launch power is increased by 8 dB in SWG waveguide, indicating higher
tolerance to the nonlinear impairments, compared to a silicon wire waveguide with identical
length. With the optimum launch power, all 75 channels exhibit bit-error rate (BER) values
less than 4e-5 after SWG waveguide transmission. We also evaluate the terabit-scale data
transmission performance through four silicon SWG waveguides with different lengths (1
mm, 2 mm, 4 mm and 12 mm). The required optical signal-to-noise ratios (OSNRs) to
achieve BER level of 1e-3 are around 15.27, 15.47, 16.66 and 20.38 dB, respectively.
© 2017 Optical Society of America
OCIS codes: (130.3120) Integrated optics devices; (060.4510) Optical communications; (230.7370) Waveguides.
References and links
1. 2015 International Technology Roadmap for Semiconductors (ITRS), http://www.itrs2.net/itrs-reports.html.
2. M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I.
Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).
3. R. K. Dokania and A. B. Apsel, “Analysis of challenges for on-chip optical interconnects,” in Proceedings of the
19th ACM Great Lakes symposium on VLSI (2009), pp. 275–280.
4. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R.
Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H.
Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that
communicates directly using light,” Nature 528(7583), 534–538 (2015).
5. B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H.
Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon
integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol.
32(4), 743–751 (2014).
6. P. Dong, Y.-K. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100 Gb/s silicon
photonic network-on-chip [Invited],” J. Opt. Commun. Netw. 7(1), A37–A43 (2015).
7. X. Xiao, H. Xu, X. Li, Z. Li, Y. Yu, and J. Yu, “High-speed on-chip photonic link based on ultralow-power
microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper
Tu2E. 6.
8. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358
(2015).
9. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics
4(8), 518–526 (2010).
Vol. 25, No. 3 | 6 Feb 2017 | OPTICS EXPRESS 2918
https://doi.org/10.1364/OE.25.002918
Received 30 Nov 2016; revised 22 Jan 2017; accepted 24 Jan 2017; published 3 Feb 2017