Fortran77实现有限元平面三节点计算程序

版权申诉
0 下载量 87 浏览量 更新于2024-10-22 收藏 4.39MB RAR 举报
知识点概述: 1. Fortran语言概念及其在有限元分析中的应用 2. 有限元分析(FEA)基础与平面三节点单元 3. 编程实现有限元分析的基本原理 4. FORTRAN77语言的特定语法和程序结构 5. 平面三节点单元的计算方法和实现细节 1. Fortran语言概念及其在有限元分析中的应用: Fortran(公式翻译系统)是最早的高级编程语言之一,专门设计用于数学和科学计算。在工程和科学计算领域,特别是有限元分析(FEA)中,Fortran语言以其高效的数值计算能力和历史悠久的应用背景而被广泛应用。有限元分析是一种用于预测物理现象的数值计算方法,广泛应用于工程领域的应力分析、热传递分析、流体动力学分析等。使用Fortran语言编写有限元程序,能够直接对硬件进行高效的操作和计算,因此,对于计算密集型的有限元分析来说,Fortran是一个非常合适的选择。 2. 有限元分析(FEA)基础与平面三节点单元: 有限元分析是一种通过将连续体离散化为有限数量的小元素来近似求解复杂问题的方法。它将一个连续系统划分为许多小的、简单的单元,这些单元通过节点相连。每个单元内部的物理量(如位移、温度、压力等)通过插值函数来近似表示。平面三节点单元是指单元形状为三角形,且每个三角形具有三个节点的单元类型。每个节点通常具有一定的自由度(比如二维问题中,每个节点可能具有x和y方向的位移自由度),通过设定边界条件和载荷,可以建立整个系统的全局刚度矩阵,从而求解系统的响应。 3. 编程实现有限元分析的基本原理: 编程实现有限元分析的基本步骤包括: a. 几何建模:定义问题的几何形状和尺寸。 b. 网格划分:将几何模型划分为有限元网格,确定单元的节点和连接方式。 c. 材料和物理属性定义:为每个单元定义材料属性(如弹性模量、泊松比等)和几何属性。 d. 边界条件和载荷施加:设置约束条件和外部载荷。 e. 建立局部刚度矩阵:为每个单元计算局部刚度矩阵。 f. 组装全局刚度矩阵:将所有局部刚度矩阵组装成一个全局刚度矩阵。 g. 应用边界条件:根据设定的边界条件修改全局刚度矩阵和载荷向量。 h. 求解线性方程组:求解修改后的线性方程组,得到节点的未知自由度(如位移)。 i. 后处理:根据求解结果进行应力、应变的计算和可视化等。 4. FORTRAN77语言的特定语法和程序结构: FORTRAN77是Fortran语言的一个版本,具有以下特点: a. 固定格式和自由格式两种源代码书写方式。 b. 变量声明必须在程序的开始部分,并明确指定变量类型。 c. 控制结构包括IF语句、DO循环、GOTO语句等。 d. 函数和子程序的定义与调用,模块化编程。 e. 文件操作,能够进行数据的输入和输出。 f. 数组操作能力,能够处理科学计算中常见的向量和矩阵运算。 5. 平面三节点单元的计算方法和实现细节: 对于平面三节点三角形单元,其计算方法涉及以下几个关键步骤: a. 单元节点的坐标信息提取,形成局部坐标系。 b. 使用形函数(如线性形函数)描述单元内任意点的物理量。 c. 建立局部刚度矩阵,这通常涉及对形函数的导数进行积分运算。 d. 将局部刚度矩阵转换为全局坐标系下的刚度矩阵,这需要进行坐标变换。 e. 组装全局刚度矩阵时,要考虑到单元之间的连续性和平衡条件。 f. 对于带有自由度的节点,需要应用边界条件,比如位移固定、载荷施加等。 g. 通过求解整个系统的线性方程组,来得到整个模型的响应。 h. 在后处理阶段,根据节点位移计算单元的应力和应变,并进行可视化展示。 在具体的FORTRAN77程序实现中,以上步骤将通过对应的编程逻辑进行实现。例如,局部刚度矩阵的计算可能涉及到嵌套循环和数值积分过程,全局刚度矩阵的组装可能需要通过数组索引和累加操作来完成。编写这样的程序需要深厚的FORTRAN编程基础,以及对有限元理论和工程应用背景的深入理解。
手机看
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回
顶部