优化关联规则挖掘:基于数组的Apriori算法改进
需积分: 5 94 浏览量
更新于2024-08-11
收藏 2.33MB PDF 举报
"基于数组的关联规则挖掘算法的研究 (2011年) - 李敏、潘祥光、曲云波"
本文主要探讨了关联规则挖掘中的效率问题,特别是针对经典的Apriori算法存在的瓶颈进行了深入研究。关联规则挖掘是数据挖掘领域的一个重要组成部分,它用于发现数据集中项集之间的有趣关系,这些关系可以用来支持决策制定和模式识别。Apriori算法是该领域的基础算法,但其效率受到频繁项集生成过程中多次数据库扫描的影响。
作者提出了一种改进的算法,该算法利用数组结构来存储项集信息,以提高挖掘效率。这一创新之处在于,通过一次性扫描数据库,减少了计算的时间开销。在算法执行过程中,先对项目进行计数,这样可以在自连接之前减少参与连接的项集数量,进一步降低了候选项集的数量,从而显著提高了算法的性能。
传统的Apriori算法需要反复生成并扫描候选项集,直到找不到新的频繁项集为止,这在处理大数据集时会导致显著的计算负担。而改进后的算法通过提前的项目计数和有效的剪枝策略,有效地降低了计算复杂性,使得在挖掘同样规模的数据时,算法运行速度更快,资源消耗更少。
此外,文中通过实例对比分析,证明了改进算法在实际应用中的优越性。实例验证通常包括对真实或模拟数据集的实验,以展示新算法在挖掘速度、内存使用和规则质量等方面的提升。这种实证研究对于证明算法的有效性和实用性至关重要。
关键词的“关联规则”指的是数据中项集之间的统计关联,“频繁项集”是指在数据集中出现频率超过预设阈值的项集,“Apriori”是经典关联规则挖掘算法的名称,而“数组”则指代文中用来优化算法的存储结构。
该研究为关联规则挖掘提供了一个高效且实用的解决方案,尤其是在处理大规模数据时,改进的算法能有效缩短挖掘时间,提高计算效率,对于数据分析和商业智能等领域具有重要的实践意义。通过引入数组结构和优化的剪枝策略,这项工作展示了在保持挖掘准确性的同时,如何降低算法的计算成本,这对于后续的研究和开发具有参考价值。
2019-07-22 上传
2021-08-11 上传
2021-05-20 上传
2009-08-12 上传
2021-06-16 上传
2022-04-18 上传
2022-04-18 上传
2022-04-18 上传
weixin_38661100
- 粉丝: 6
- 资源: 904
最新资源
- MATLAB新功能:Multi-frame ViewRGB制作彩色图阴影
- XKCD Substitutions 3-crx插件:创新的网页文字替换工具
- Python实现8位等离子效果开源项目plasma.py解读
- 维护商店移动应用:基于PhoneGap的移动API应用
- Laravel-Admin的Redis Manager扩展使用教程
- Jekyll代理主题使用指南及文件结构解析
- cPanel中PHP多版本插件的安装与配置指南
- 深入探讨React和Typescript在Alias kopio游戏中的应用
- node.js OSC服务器实现:Gibber消息转换技术解析
- 体验最新升级版的mdbootstrap pro 6.1.0组件库
- 超市盘点过机系统实现与delphi应用
- Boogle: 探索 Python 编程的 Boggle 仿制品
- C++实现的Physics2D简易2D物理模拟
- 傅里叶级数在分数阶微分积分计算中的应用与实现
- Windows Phone与PhoneGap应用隔离存储文件访问方法
- iso8601-interval-recurrence:掌握ISO8601日期范围与重复间隔检查