多特征融合与条件随机场在道路分割中的应用

需积分: 21 3 下载量 198 浏览量 更新于2024-08-13 收藏 1.07MB PDF 举报
"该文提出了一种基于多特征融合和条件随机场的道路分割方法,用于解决复杂交通场景图像中路面分割的难题。该方法通过提取纹理基元特征和颜色特征,结合支持向量机(SVM)进行初步分割,再利用全连接条件随机场(CRF)优化分割边缘,从而提高分割精度。实验结果显示,该算法达到了95.37%的平均分割准确率和94.55%的平均像素精度。" 本文探讨的是在复杂交通场景图像处理中的一个重要问题——道路分割。道路分割是自动驾驶、交通监控和智能车辆导航等领域的重要技术,它需要准确地识别出图像中的路面区域。然而,由于环境的复杂性,如光照变化、阴影干扰以及道路与背景的相似性,使得这一任务极具挑战性。 作者首先提取了图像的两个关键特征:纹理基元特征和颜色特征。纹理基元特征能够捕捉图像中不同结构和模式的信息,有助于区分路面和非路面区域;颜色特征则反映了图像的基本色调和分布,对于识别不同物体的表面特性至关重要。这两种特征的融合能够提供更全面的图像理解,增强道路分割的鲁棒性。 接下来,他们将道路分割问题转化为一个基于像素的二分类问题,采用支持向量机(SVM)作为分类器,对图像进行初步分割,将路面区域与背景区域大致区分开。SVM是一种有效的监督学习模型,能有效地处理高维数据,尤其适用于小样本分类问题。 最后,为了进一步优化分割结果,文章引入了全连接条件随机场(CRF)。CRF是一种统计建模方法,它考虑了像素之间的空间关系和上下文信息,通过添加颜色和位置约束,使得分割边界更加平滑,减少了孤立噪声点和边缘不连续性,从而提高了分割质量。 通过与其他分割算法的对比,基于多特征融合和条件随机场的道路分割方法在实验中表现出较高的性能,平均分割准确率达到95.37%,平均像素精度达到94.55%,证明了该方法的有效性和优越性。这种方法对于改善交通场景图像分析的准确性,提升相关应用系统的性能具有重要的实践意义。