YARN:Hadoop集群的资源管理革命
版权申诉
130 浏览量
更新于2024-07-02
收藏 366KB PPTX 举报
"这篇文档详细介绍了YARN在大数据平台构建中的重要概念,包括YARN的定义、诞生背景、优势、特点以及其核心架构。"
在大数据处理领域,YARN(Yet Another Resource Negotiator)是一个至关重要的组件,它作为Hadoop集群的资源管理器,旨在解决Hadoop 1.x中MapReduce的局限性。YARN的出现是为了克服早期Hadoop架构中的扩展性差、可靠性不足、资源利用率低以及不支持多计算框架等问题。
1. **扩展性差**:在Hadoop 1.x中,JobTracker同时负责资源管理和作业控制,这种设计导致了单一节点的压力过大,成为系统扩展的瓶颈。YARN通过将资源管理和作业调度分离,显著提升了系统的可扩展性。
2. **可靠性差**:采用Master/Salve架构,Master节点的单点故障可能导致整个系统瘫痪。YARN引入了高可用性设计,降低了单点故障的风险。
3. **资源利用率低**:Hadoop 1.x的资源分配基于槽位(slot),导致资源分配粗粒度,部分资源可能无法得到有效利用。YARN通过更精细的资源管理,提高了资源利用率。
4. **不支持多框架**:在Hadoop 1.x中,仅支持MapReduce一种计算框架。YARN的设计使得系统能够支持多种计算框架并行运行,如Spark、Tez等。
YARN的核心思想是引入全局的ResourceManager和每个应用程序对应的ApplicationMaster,以及分布在各节点上的NodeManager。ResourceManager负责集群资源的全局调度,ApplicationManager管理用户作业的生命周期,而NodeManager则监控和管理节点上的任务执行。这种设计使得YARN具备以下优势:
1. **支持非MapReduce应用**:YARN不再局限于MapReduce,可以运行各种类型的计算框架。
2. **可扩展性**:通过分离资源管理和作业调度,YARN可以轻松扩展以适应更大规模的集群。
3. **提高资源利用率**:通过更精细的资源分配,避免了资源浪费,提高了集群的整体效率。
4. **用户敏捷性**:开发人员可以更快地部署和调整应用程序,增强了系统的响应速度。
5. **高可用性**:通过设置ResourceManager的备份,实现了系统的高可用性,确保服务连续性。
YARN的架构遵循Master/Slave模式,主要包括ResourceManager、NodeManager和ApplicationMaster三个关键组件。ResourceManager中的Scheduler负责资源的公平或优先级调度,而ApplicationManager处理应用程序的提交、初始化和监控。NodeManager则在每个节点上运行,与ResourceManager通信,报告资源使用情况,并执行ApplicationMaster的指令。
YARN的出现极大地改进了Hadoop的架构,使得大数据处理更加灵活、高效和可靠,成为了现代大数据平台构建不可或缺的一部分。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2022-06-21 上传
2022-06-21 上传
2022-06-21 上传
2022-06-20 上传
2022-06-21 上传
2021-04-27 上传
知识世界
- 粉丝: 373
- 资源: 1万+
最新资源
- 正整数数组验证库:确保值符合正整数规则
- 系统移植工具集:镜像、工具链及其他必备软件包
- 掌握JavaScript加密技术:客户端加密核心要点
- AWS环境下Java应用的构建与优化指南
- Grav插件动态调整上传图像大小提高性能
- InversifyJS示例应用:演示OOP与依赖注入
- Laravel与Workerman构建PHP WebSocket即时通讯解决方案
- 前端开发利器:SPRjs快速粘合JavaScript文件脚本
- Windows平台RNNoise演示及编译方法说明
- GitHub Action实现站点自动化部署到网格环境
- Delphi实现磁盘容量检测与柱状图展示
- 亲测可用的简易微信抽奖小程序源码分享
- 如何利用JD抢单助手提升秒杀成功率
- 快速部署WordPress:使用Docker和generator-docker-wordpress
- 探索多功能计算器:日志记录与数据转换能力
- WearableSensing: 使用Java连接Zephyr Bioharness数据到服务器