拉普拉斯模板中心系数正向应用:部分线性模型的adaptive group lasso变量选择
需积分: 49 60 浏览量
更新于2024-08-06
收藏 19.69MB PDF 举报
"这篇文档是关于研究生级别的数字图像处理课程,由彭宇新在北京大学计算机科学技术研究所教授。课程主要依据Rafael C. Gonzalez和Richard E. Woods的教材,同时引用了多本参考书籍,涵盖了从图像增强到内容分析的广泛主题。课程目标包括理解和应用图像处理的基本原理,并为相关领域的深入研究做准备。考试形式为平时作业和闭卷考试,助教老师为曹磊。"
在数字图像处理领域,"拉普拉斯模板"是一种常用的边缘检测工具,它的中心系数可以为正或负。拉普拉斯算子通过计算图像二阶导数来检测图像中的边缘,中心系数的正负会影响边缘检测的效果。当中心系数为正时,拉普拉斯模板能够有效地增强图像中的边缘,特别是在检测亮度变化剧烈的区域。然而,如果系数为负,则可能导致边缘的反向检测或者对某些特定类型的边缘不敏感。
另一方面,"Adaptive Group Lasso" 是统计建模中的一种变量选择方法,尤其在部分线性模型中,它结合了Group Lasso的组惩罚和Adaptive Lasso的自适应权重。Group Lasso鼓励整个特征组内的系数同时为零,以实现特征选择,而Adaptive Lasso则是根据系数的绝对值大小给予不同的惩罚权重,这有助于更精确地筛选出对模型有显著贡献的变量。在图像处理中,这种变量选择方法可能应用于特征提取或压缩,以减少不必要的计算量并保持图像质量。
课程的主要内容包括:
1. 概述:介绍数字图像处理的基础概念。
2. 空间域图像增强:通过滤波器改善图像的视觉效果。
3. 彩色图像处理:处理RGB或其他颜色模型的图像。
4. 基于内容的图像检索:利用图像内容进行搜索和匹配。
5. 傅里叶变换:将图像从空间域转换到频率域。
6. 频率域图像增强:通过频域操作优化图像。
7. 图像复原:修复图像失真或噪声。
8. 图像压缩:减少图像数据量而不明显降低质量。
9. 形态学图像处理:使用结构元素进行形状分析和操作。
10. 图像分割:将图像分成有意义的区域。
11. 表示与描述:创建图像的数学表示以便分析和检索。
12. 基于内容的视频分析和检索技术:扩展到视频数据的处理。
13. 考试复习:回顾课程关键概念和技术。
课程的目标是让学生掌握图像处理的基本理论和方法,能够运用所学解决实际问题,并为图像处理、计算机视觉、基于内容的图像和视频检索以及生物特征识别等领域研究奠定基础。考试由平时作业(可以是大作业或认可的课题)和闭卷考试组成,以评估学生对基本概念、原理和算法的理解。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2021-05-26 上传
2021-05-26 上传
2022-04-19 上传
2021-05-26 上传
2021-05-26 上传
2021-05-26 上传
CSDN热榜
- 粉丝: 1902
- 资源: 3902
最新资源
- 俄罗斯RTSD数据集实现交通标志实时检测
- 易语言开发的文件批量改名工具使用Ex_Dui美化界面
- 爱心援助动态网页教程:前端开发实战指南
- 复旦微电子数字电路课件4章同步时序电路详解
- Dylan Manley的编程投资组合登录页面设计介绍
- Python实现H3K4me3与H3K27ac表观遗传标记域长度分析
- 易语言开源播放器项目:简易界面与强大的音频支持
- 介绍rxtx2.2全系统环境下的Java版本使用
- ZStack-CC2530 半开源协议栈使用与安装指南
- 易语言实现的八斗平台与淘宝评论采集软件开发
- Christiano响应式网站项目设计与技术特点
- QT图形框架中QGraphicRectItem的插入与缩放技术
- 组合逻辑电路深入解析与习题教程
- Vue+ECharts实现中国地图3D展示与交互功能
- MiSTer_MAME_SCRIPTS:自动下载MAME与HBMAME脚本指南
- 前端技术精髓:构建响应式盆栽展示网站