贝叶斯网络与信息理论:相对熵和互信息解析
需积分: 15 86 浏览量
更新于2024-08-16
收藏 7.52MB PPT 举报
"本文主要介绍了贝叶斯网络,并涉及到机器学习的相关概念,包括对偶问题的视角转换、Delaunay三角剖分、K近邻图的性质、相对熵(又名互熵、交叉熵等)的概念及应用、以及互信息和信息增益的复习。"
在机器学习领域,贝叶斯网络是一种用于表示变量之间条件概率关系的概率图模型。它基于贝叶斯定理,能够有效地处理不确定性和不完整的数据。贝叶斯网络通过节点和边来表示随机变量及其条件依赖关系,提供了一种有向、有结构的方式来建模复杂系统。
文中提到的对偶问题,是线性规划的一个重要概念,这里以一个选择整数使和为定值s的问题为例,展示了如何从不同角度理解问题。对偶图如Voronoi图和Delaunay剖分,是几何优化问题中的关键工具,它们在空间分割和图形分析中有广泛应用。
接着讨论了K近邻图(K-Nearest Neighbor Graph, KNN图)。在KNN图中,每个节点的度至少为K,意味着每个节点都与其最近的K个邻居相连。而在K互近邻图中,节点的度至多为K,意味着没有节点与超过K个其他节点相邻,这有助于理解KNN算法的特性。
相对熵,或称为互熵、交叉熵,是衡量两个概率分布差异的一种度量。它不是对称的,即D(p||q)通常不等于D(q||p),并且总是非负的。Jensen不等式在此处用于解释相对熵的性质,它在优化问题中起到重要作用,特别是在信息论和统计学中,例如在最小化K-L距离以逼近目标分布时。
文章还探讨了互信息的概念,它是衡量两个随机变量X和Y之间关联程度的量。互信息等于两变量联合分布与独立分布乘积的相对熵。同时,信息增益是决策树学习中的一个重要概念,它衡量了通过了解特征A来减少类X不确定性的程度,是特征选择的重要依据。
这篇资料涵盖了贝叶斯网络的基本思想,以及机器学习中涉及的数学工具,如对偶问题、几何图形分析、概率分布的相似度度量以及信息理论的一些基本概念,这些都是理解和构建智能系统的关键组成部分。
673 浏览量
199 浏览量
2022-11-24 上传
2021-04-13 上传
2015-09-26 上传
136 浏览量
112 浏览量
341 浏览量
点击了解资源详情
涟雪沧
- 粉丝: 23
- 资源: 2万+
最新资源
- RCTF_2015_web500.rar
- react-my-app:学习react
- V4音效4.4.0.4全网最新版(附带安装方法和脉冲样本使用发放).zip
- 电脑软件简历模板大全.rar
- arsenio:ping问题的作者,被arsenio bot遗忘了
- WholesomeHaha.RevenantWww.gazrZ1D
- ctf500--app登录加密算法.rar
- kernelry.github.io:我的博客
- group-by-params:数组使用的简单分组功能,可按参数执行分组。 参数可以是对象键或嵌套路径
- 一个好用的http测试工具
- shortly-angular
- 电脑软件NDM下载器.rar实用
- JS在线汉字笔画练习特效特效代码
- appc-github-client:用于监控Github组织,存储库等的仪表板!
- getopts:解析CLI参数
- 盘古:这是一个演示说明