基于遗传算法的二维排样研究-51单片机adc0809c程序
需积分: 39 100 浏览量
更新于2024-08-10
收藏 2.46MB PDF 举报
"这篇硕士论文探讨了基于遗传算法的二维排样问题,特别是在51单片机上实现ADC0809C程序代码的背景下。文章中提到的示意图展示了在特定规则下,如何通过切割策略产生树状关系图的节点,以优化材料利用率。图4.8描述了一个含有5个零件的切割布局,而图4.9则进一步解释了排放第一个零件后的具体情况。遗传算法在此处被用于优化排样方案,以提高切割效率和材料利用效率。论文的作者是宋开胜,导师是姚念民教授,专注于计算机系统结构领域,具体为工学硕士的学位论文,于2010年在哈尔滨工程大学完成。"
这篇论文的核心知识点包括:
1. 遗传算法(Genetic Algorithm):遗传算法是一种模拟自然选择和遗传机制的全局优化方法,用于解决复杂问题,如二维排样的优化。它通过编码个体、选择、交叉和变异等操作来搜索解决方案空间。
2. 二维排样(Two-dimensional Nesting):二维排样是制造业中的一个重要问题,目的是在有限的原材料上有效地安排多个零件,以最小化浪费。在本论文中,遗传算法被应用于寻找最佳的零件布局。
3. 51单片机:51系列单片机是一种广泛应用的微控制器,适用于各种嵌入式系统。ADC0809C是其上的模数转换器芯片,用于将模拟信号转化为数字信号,可能在排样过程中用于测量和控制切割位置。
4. ADC0809C程序代码:论文中提到的代码可能涉及到读取传感器数据、处理转换结果以及控制切割设备的运动,确保按照预定的排样策略进行切割。
5. 树状关系图:论文中提到的树状关系图用于表示切割过程中的各个步骤和产生的子部件。每个节点代表一次切割操作,连接的边表示父子关系,这种结构有助于追踪和管理切割路径。
6. 切割策略:论文中提到的切割策略包括竖向和横向切割,这些策略影响着节点的生成和材料的利用效率。
7. 学位论文声明:论文包含了原创性和授权使用声明,强调了论文的独立完成性,知识产权归属,以及对学位论文内容的使用和传播的规定。
通过以上知识点,我们可以理解该论文是如何运用遗传算法来解决实际的工程问题,特别是在优化二维排样方面,以及51单片机在其中的角色。

一土水丰色今口
- 粉丝: 23
最新资源
- 逆强化学习项目示例教程与BURLAP代码库解析
- ASP.NET房产销售管理系统设计与实现
- Android精美转盘交互项目开源代码下载
- 深入理解nginx与nginx-http-flv-module-1.2.9的整合推流
- React Progress Label:实现高效进度指示的组件
- mm3Capture:JavaFX实现的MM3脑波数据捕获工具
- ASP.NET报表开发设计与示例解析
- 打造美观实用的Linktree侧边导航栏
- SEO关键词拓展软件:追词工具使用体验与分析
- SpringBoot与Beetl+BeetlSQL集成实现CRUD操作Demo
- ASP.NET开发的婚介管理系统功能介绍
- 企业政府网站源码美化版_全技术领域项目资源分享
- RAV4 VFD屏时钟自制项目与驱动程序分析
- STC_ISP_V481 在32位Win7系统上的成功运行方法
- Eclipse RCP用例深度解析与实践
- WPF中Tab切换与加载动画Loding的实现技巧