Python编程入门:自然语言处理指南

5星 · 超过95%的资源 需积分: 43 61 下载量 173 浏览量 更新于2024-07-29 2 收藏 3.42MB PDF 举报
《自然语言处理入门:Python实战》(Natural Language Processing with Python)是一本由Steven Bird、Ewan Klein和Edward Loper合著的英文书籍,专为初学者设计,旨在通过Python这一流行的编程语言教授自然语言处理(NLP)的基本概念和技术。该书以其简洁明了的风格深受读者喜爱,即使对于非英语母语的学习者来说也易于理解。 本书涵盖了自然语言处理的核心领域,包括词法分析、句法分析、语义理解和文本挖掘等。作者以实例驱动的方式,引导读者通过Python编程实践,掌握诸如词袋模型、n-gram模型、TF-IDF、情感分析、词嵌入(如Word2Vec和GloVe)以及深度学习在NLP中的应用等关键概念。书中还涉及如何使用Python库,如NLTK (Natural Language Toolkit) 和 SpaCy,它们是进行NLP项目开发的重要工具。 此外,书中特别强调了实际应用的重要性,不仅有理论知识的讲解,还有针对不同场景的实战项目,帮助读者将理论知识转化为实际解决问题的能力。对于希望在人工智能领域尤其是NLP方向发展的工程师和研究人员而言,这本书既适合自学,也适合作为课程教材或参考书。 版权方面,本书享有2009年Steven Bird、Ewan Klein和Edward Loper的完全版权,并允许教育、商业或销售推广用途。电子版同样广泛提供,可通过O'Reilly Media的在线平台获取更多信息。编排团队包括了编辑Julie Steele、生产编辑Loranah Dimant、资深校对员Genevieve d'Entremont,以及负责索引、封面设计和内部设计的专业人士。 总体来说,《自然语言处理入门:Python实战》是一本实用且系统介绍NLP技术的教程,它将理论与实践相结合,对于任何希望在这个领域深化学习的读者来说,是一份不可多得的宝贵资源。无论你是初学者还是有一定经验的开发者,都能从中收获到有价值的洞见和技能提升。
2017-08-11 上传
Python Natural Language Processing by Jalaj Thanaki English | 31 July 2017 | ISBN: 1787121429 | ASIN: B072B8YWCJ | 486 Pages | AZW3 | 11.02 MB Key Features Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Book Description This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. What you will learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot,