高速PCB设计中Hyperlynx信号完整性分析关键策略

4星 · 超过85%的资源 需积分: 14 26 下载量 127 浏览量 更新于2024-09-19 收藏 470KB DOCX 举报
信号完整性分析在现代高速PCB设计中扮演着至关重要的角色。随着数字电子设备的不断发展,如高速数字信号处理器(DSP)和现场可编程门阵列(FPGA)的应用,信号传输速率的提升导致了对信号质量的更高要求。本文以一块集成了DSP和FPGA的视频控制板为例,探讨了信号完整性问题,特别是当总线频率达到133MHz(如DSP与外部SDRAM的连接)和50MHz(如FPGA的PPI和SPORT接口)时,必须确保反射、串扰、轨道塌陷噪声以及电磁干扰(EMI)等问题得到妥善解决,以避免设计延误和经费浪费。 Hyperlynx是一款广泛应用于信号完整性分析的高级工具,它能帮助设计师在布线阶段进行仿真,提前预测并优化信号路径,确保信号在高速传输过程中保持稳定,不会因为反射、耦合效应等因素导致信号失真。例如,通过叠层设计,选用至少4层的PCB结构,将电源地平面设置在中间,以提供低阻抗的返回路径,降低反射噪声。同时,优化电源分布系统(PDS),可以有效抑制轨道塌陷噪声,确保电源路径的电压稳定性。 在PCB板前分析阶段,除了叠层设计,还包括元件布局的考量,比如将大型IC和接插件放置在信号传输路径较为清晰的顶层,而敏感的信号线和小型元器件则放在底层以减少相互影响。此外,还要考虑制造工艺和成本因素,权衡层数增加带来的信号质量提升与加工成本的上升。 总结来说,信号完整性分析在高速PCB设计中是一项核心任务,借助Hyperlynx这样的专业工具,设计师能够更有效地管理复杂的信号路径,提高设计效率,保证信号的准确传输,从而实现高性能电子系统的成功构建。
2008-10-31 上传
编辑推荐 本书全面论述了信号完整性问题,它以入门式的切入方式,使得读者很容易认识到物理互连影响电气性能的实质,从而可以尽快掌握信号完整性设计技术。本书作者从实践的角度指出了造成信号完整性问题的根源,特别给出了在设计前期阶段的问题解决方案。 本书的主要内容 ·信号完整性和物理设计概论 ·带宽、电感和特性阻抗的实质含义 ·电阻、电容、电感和阻抗的相关分析 ·解决信号完整性问题的四个实用技术手段:经验法则、解析近似、数值模拟、实际测量 ·物理互连设计对信号完整性的影响 ·数学推导背后隐藏的解决方案 ·改进信号完整性推荐的设计准则 通常,大多数同类书籍都会花费大量的篇幅进行严格的理论推导和数学描述,而本书则更强调直观理解、实用工具和工程实践。 内容简介 本书全面论述了信号完整性问题。主要讲述了信号完整性和物理设计概论,带宽、电感和特性阻抗的实质含义,电阻、电容、电感和阻抗的相关分析,解决信号完整性问题的四个实用技术手段,物理互连设计对信号完整性的影响,数学推导背后隐藏的解决方案,以及改进信号完整性推荐的设计准则等。该书与其他大多数同类书籍相比更强调直观理解、实用工具和工程实践。它以入门式的切入方式,使得读者很容易认识到物理互连影响电气性能的实质,从而可以尽快掌握信号完整性设计技术。本书作者以实践专家的视角提出了造成信号完整性问题的根源,特别给出了在设计前期阶段的问题解决方案。这是面向电子工业界的设计工程师和产品负责人的一本具有实用价值的参考书,其目的在于帮助他们在信号完整性问题出现之前能提前发现并及早加以解决,同时也可作为相关专业本科生及研究生的教学指导用书。 作者简介 Eric Bogatin,于1976年获麻省理工大学物理学士学位,并于1980年获亚利桑那大学物理硕士和博士学位。目前是GigaTest实验室的首席技术主管。多年来,他在信号完整性领域,包括基本原理、测量技术和分析工具等方面举办过许多短期课程,培训过4000多工程师,在信号完整性、互连设计、封装技术等领域已经发表了100多篇技术论文、专栏文章和专著。 译者简介: 李玉山,现为西安电子科技大学教授、国家重点学科“电路与系统”博士生导师、国家电工电子教学基地副主任、电路CAD研究所所长、全国通信ASIC委员会委员及国家IC设计西安基地专家委员。曾于1986年和1999年分别赴美国迈阿密大学和北卡罗来纳州立大学合作研究机器视觉和VLSI设计。 目录 第1章 信号完整性分析概论 1.1 信号完整性的含义 1.2 单一网络的信号质量 1.3 串扰 1.4 轨道塌陷噪声 1.5 电磁干扰 1.6 信号完整性的两个重要推论 1.7 电子产品的趋势 1.8 新设计方法学的必要性 1.9 一种新的产品设计方法学 1.10 仿真 1.11 模型和建模 1.12 通过计算创建电路模型 1.13 三种测量技术 1.14 测量的作用 1.15 小结 第2章 时域与频域 2.1 时域 2.2 频域中的正弦波 2.3 频域中解决问题的捷径 2.4 正弦波特征 2.5 傅里叶变换 2.6 重复信号的频谱 2.7 理想方波的频谱 2.8 从频域到时域 2.9 带宽对上升时间的影响 2.10 带宽及上升时间 2.11 “有效的”含义 2.12 实际信号的带宽 2.13 带宽和时钟频率 2.14 测量的带宽 2.15 模型的带宽 2.16 互连线的带宽 2.17 小结 第3章 阻抗和电气模型 3.1 用阻抗描述信号完整性 3.2 阻抗的含义 3.3 实际和理想的电路元件 3.4 时域中理想电阻的阻抗 3.5 时域中理想电容的阻抗 3.6 时域中理想电感的阻抗 3.7 频域中的阻抗 3.8 等效电气电路模型 3.9 电路理论和SPICE 3.10 建模简介 3.11 小结 第4章 电阻的物理基础 4.1 将物理设计转化为电气性能 4.2 互连线电阻的最佳近似 4.3 体电阻率 4.4 单位长度电阻 4.5 方块电阻 4.6 小结 第5章 电容的物理基础 5.1 电容中的电流流动 5.2 球面电容 5.3 平行板近似 5.4 介电常数 5.5 电源、地平面和去耦电容 5.6 单位长度电容 5.7 二维场求解器 5.8 有效介电常数 5.9 小结 第6章 电感的物理基础 6.1 电感的含义 6.2 电感定律之一:电流周围将形成闭合磁力线圈 6.3 电感定律之二:电感是导体上流过单位安培电流时,导体周围磁力线圈的韦伯值 6.4 自感和互感 6.5 电感定律之三:当导体周围的磁力线圈匝数变化时,导体两端将产生感应电压 6.6 局部电感 6.7 有效电感、总电感或净电感及地弹 6.8 回路自感和回路互感 6.9 电源分布系统和回路电感 6.10 单位面积的回路电感 6.11 平面和过孔接触孔的回路电感 6.12 具有出砂孔区域的平面回路电感 …… 第7章 传输线的物理基础 第8章 传输线与反射 第9章 有损线、上升边退化和材料特性 第10章 传输线的串扰 第11章 差分对与差分阻抗 附录A 100条使信号完整性问题最小化的通用设计原则 附录B 100条估计信号完整性效应的经验法则 附录C 参考文献 附录D 术语表