"基于机器学习的问答推荐算法设计"——电子科技大学学士论文初稿0.111"
需积分: 0 167 浏览量
更新于2024-03-20
收藏 511KB DOCX 举报
Abstract
With the rapid development of the internet, search engines have become the gateway to information, and related technologies have emerged endlessly. Traditional search engines consist of four processes: web crawling, index building, content retrieval, and result ranking. Initially, result ranking involved calculating the relevance of web pages using manually crafted formulas. However, in the current era dominated by machine learning, the combination of machine learning and search engines has led to the emergence of Learning to Rank (LTR), which addresses the increasing complexity of factors to consider in web page ranking. This paper focuses on the design of a question and answer recommendation algorithm based on machine learning, specifically utilizing LambdaMART for ranking web pages. The algorithm incorporates text processing, keyword extraction, web crawling, and search engine indexing to effectively recommend relevant question and answer pairs.
Keywords: machine learning, question answering recommendation, LambdaMART, text processing, keyword extraction, web crawling, search engine, indexing.
2022-08-08 上传
2022-08-08 上传
2022-08-03 上传
2175 浏览量
595 浏览量
524 浏览量
517 浏览量
16089 浏览量
2627 浏览量
代码深渊漫步者
- 粉丝: 21
- 资源: 320
最新资源
- EJB.Design.Patterns.EJB设计模式.pdf
- Bigtable: A Distributed Storage System for Structured Data
- The Google File System
- MapReduce: Simpli
- 深入浅出MFC——MFC初级入门(繁体版)
- CGI跟我学 web编程
- c8051f 应用笔记
- ORACLE PROC
- Java 开发软件下载以及环境搭建
- 深入学习C++指针_不再害怕指针
- linux-c语言编程
- Flex 3 Cookbook 中文版
- 深入浅出系列之二_SubVersion.pdf
- 软件测试指导书—《软件测试从这里开始》
- 毕业设计—软件测试—性能测试的研究
- 利用数据结构堆栈求解迷宫