"基于机器学习的问答推荐算法设计"——电子科技大学学士论文初稿0.111"
需积分: 0 183 浏览量
更新于2024-03-20
收藏 511KB DOCX 举报
Abstract
With the rapid development of the internet, search engines have become the gateway to information, and related technologies have emerged endlessly. Traditional search engines consist of four processes: web crawling, index building, content retrieval, and result ranking. Initially, result ranking involved calculating the relevance of web pages using manually crafted formulas. However, in the current era dominated by machine learning, the combination of machine learning and search engines has led to the emergence of Learning to Rank (LTR), which addresses the increasing complexity of factors to consider in web page ranking. This paper focuses on the design of a question and answer recommendation algorithm based on machine learning, specifically utilizing LambdaMART for ranking web pages. The algorithm incorporates text processing, keyword extraction, web crawling, and search engine indexing to effectively recommend relevant question and answer pairs.
Keywords: machine learning, question answering recommendation, LambdaMART, text processing, keyword extraction, web crawling, search engine, indexing.
2022-08-08 上传
2022-08-08 上传
2022-08-03 上传
1726 浏览量
709 浏览量
937 浏览量
533 浏览量
1534 浏览量
1578 浏览量
代码深渊漫步者
- 粉丝: 21
- 资源: 320
最新资源
- WordPress作为新闻管理面板的实现指南
- NPC_Generator:使用Ruby打造的游戏角色生成器
- MATLAB实现变邻域搜索算法源码解析
- 探索C++并行编程:使用INTEL TBB的项目实践
- 玫枫跟打器:网页版五笔打字工具,提升macOS打字效率
- 萨尔塔·阿萨尔·希塔斯:SATINDER项目解析
- 掌握变邻域搜索算法:MATLAB代码实践
- saaraansh: 简化法律文档,打破语言障碍的智能应用
- 探索牛角交友盲盒系统:PHP开源交友平台的新选择
- 探索Nullfactory-SSRSExtensions: 强化SQL Server报告服务
- Lotide:一套JavaScript实用工具库的深度解析
- 利用Aurelia 2脚手架搭建新项目的快速指南
- 变邻域搜索算法Matlab实现教程
- 实战指南:构建高效ES+Redis+MySQL架构解决方案
- GitHub Pages入门模板快速启动指南
- NeonClock遗产版:包名更迭与应用更新