"基于机器学习的问答推荐算法设计"——电子科技大学学士论文初稿0.111"
需积分: 0 37 浏览量
更新于2024-03-20
收藏 511KB DOCX 举报
Abstract
With the rapid development of the internet, search engines have become the gateway to information, and related technologies have emerged endlessly. Traditional search engines consist of four processes: web crawling, index building, content retrieval, and result ranking. Initially, result ranking involved calculating the relevance of web pages using manually crafted formulas. However, in the current era dominated by machine learning, the combination of machine learning and search engines has led to the emergence of Learning to Rank (LTR), which addresses the increasing complexity of factors to consider in web page ranking. This paper focuses on the design of a question and answer recommendation algorithm based on machine learning, specifically utilizing LambdaMART for ranking web pages. The algorithm incorporates text processing, keyword extraction, web crawling, and search engine indexing to effectively recommend relevant question and answer pairs.
Keywords: machine learning, question answering recommendation, LambdaMART, text processing, keyword extraction, web crawling, search engine, indexing.
2022-08-08 上传
2022-08-08 上传
2022-08-08 上传
1527 浏览量
1726 浏览量
1482 浏览量
点击了解资源详情
点击了解资源详情
744 浏览量
代码深渊漫步者
- 粉丝: 21
- 资源: 320
最新资源
- 前端协作项目:发布猜图游戏功能与待修复事项
- Spring框架REST服务开发实践指南
- ALU课设实现基础与高级运算功能
- 深入了解STK:C++音频信号处理综合工具套件
- 华中科技大学电信学院软件无线电实验资料汇总
- CGSN数据解析与集成验证工具集:Python和Shell脚本
- Java实现的远程视频会议系统开发教程
- Change-OEM: 用Java修改Windows OEM信息与Logo
- cmnd:文本到远程API的桥接平台开发
- 解决BIOS刷写错误28:PRR.exe的应用与效果
- 深度学习对抗攻击库:adversarial_robustness_toolbox 1.10.0
- Win7系统CP2102驱动下载与安装指南
- 深入理解Java中的函数式编程技巧
- GY-906 MLX90614ESF传感器模块温度采集应用资料
- Adversarial Robustness Toolbox 1.15.1 工具包安装教程
- GNU Radio的供应商中立SDR开发包:gr-sdr介绍