doi: 10 11799 / ce201902018
收稿日期: 2018
-
10
-
22
基金项目: 国家重点研发计划 “公共安全风险防控与应急技术装备” 重点专项项目(2016YFC0801800); 江苏省重点研发
计划项目(BE2016046)
作者简介: 吴新忠(1976—), 男, 江苏徐州人, 博士, 副教授, 现从事矿井通风网络建模、 解算及优化研究, E
-
mail:
wxzcumt@ 126 com。
引用格式: 吴新忠, 张兆龙, 程健维, 等. 矿井通风网络的多种群自适应粒子群算法优化研究 [ J]. 煤炭工程, 2019, 51
(2): 75
-
81.
矿井通风网络的多种群自适应粒子群算法优化研究
吴新忠
1
, 张兆龙
1
, 程健维
2
, 胡建豪
1
, 任子晖
1
(1 中国矿业大学 信息与控制工程学院, 江苏 徐州 221116;
2 中国矿业大学 安全工程学院, 江苏 徐州 221116)
摘 要: 针对矿井通风网络分支风量优化问题, 以矿井通风网络的总功率最小为目标, 结合矿
井模型中风量平衡方程、 风压平衡方程、 分支阻力方程以及风机特性曲线方程等约束条件, 提出一
种多种群自适应粒子群优化算法(MA
-
PSO)对矿井通风网络实现寻优。 首先对随机生成的种群进行
初始化预处理, 将适应值从高到低排序, 然后以预处理后的局部最优解为圆心, 以局部最优解与其
他粒子的欧式距离的平均值为半径, 将种群划分成五个子种群, 接着在速度更新公式中引入拓扑项
和种群交流因子, 以种群为单位在求解空间中搜索, 保障种群的多样性, 从而加快种群进化和算法
收敛速度; 最后采用自适应权重和冗余粒子初始化淘汰策略, 提高算法搜索能力和学习能力。 仿真
结果表明: 该算法具有较好的多模态寻优率、 更快的收敛速度和更高的收敛精度, 优化后通风系统
消耗的总功率较之前相比下降 26 78%, 节能效果显著。
关键词: 矿井通风; 粒子群算法; 多种群; 自适应; 罚函数
中图分类号: TD725 文献标识码: A 文章编号: 1671
-
0959(2019)02
-
0075
-
07
Optimization of Multi
-
group Self
-
adaptive Particle Swarm Algorithm
for Mine Ventilation Network
WU Xin
-
zhong
1
, ZHANG Zhao
-
long
1
, CHENG Jian
-
wei
2
, HU Jian
-
hao
1
, REN Zi
-
hui
1
(1 School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China;
2 School of Safety engineering, China University of Mining and Technology, Xuzhou 221116, China)
Abstract: Aiming at the optimization of branch air volume in mine ventilation network, taking the minimum total power of
mine ventilation network as the goal. Based on the balance equation of stroke volume, wind pressure balance equation, branch
resistance equation and fan characteristic curve equation, a multi group adaptive particle swarm optimization algorithm (MA
-
PSO) is proposed to optimize the mine ventilation network. Firstly, the random population is generated and pretreated, and
the adaptive value is sorted from high to low. Secondly, taking local optimal solution as the center, the local optimal solution
and the average value of the Euclidean distance of other particles as the radius, and the population is divided into five
subpopulations, and then the topology item is introduced into the speed updating formula. With the population exchange factor,
the particle is searched in the solution space in the subpopulation, and the diversity of the population is ensured, thus the
speed of evolution and convergence is accelerated. Finally, the adaptive weight and redundant particles are used to initialize
the elimination strategy to improve the searching ability and learning ability of the algorithm. The simulation results show that
the algorithm has better multi
-
modal optimization rate, faster convergence speed and higher convergence precision. The total
power consumed by the optimized ventilation system is 26 78% lower than that of the previous, and the energy saving effect is
remarkable.
Keywords: mine ventilation; particle swarm optimization; multi
-
group; self
-
adaptive; penalty function
57
第 51 卷 第2期
煤 炭 工 程
COAL ENGINEERING
Vol 51, No 2
中国煤炭行业知识服务平台www.chinacaj.net