广义Benders分解法求解机组组合问题
89 浏览量
更新于2024-09-07
4
收藏 242KB PDF 举报
"求解机组组合问题的广义Benders分解方法是广西大学简金宝和全然两位学者提出的一种优化算法,主要用于解决电力系统的机组组合问题。该方法将机组组合问题转化为混合整数二次规划(MIQP)问题,并采用广义Benders分解技术进行求解。这种方法将混合整数非线性规划问题分解为主问题(混合整数线性规划)和子问题(非线性规划),通过交替求解两者来找到最优解。经过对100机组24时段等6个系统的数值仿真,证实了该方法能在较少的计算时间内得到高质量的次优解。该研究对电力系统自动化领域具有重要意义,特别是对于复杂优化问题的求解提供了新的思路。"
广义Benders分解方法(GBDM)是运筹学中的一种高效算法,主要用于处理大型、复杂的混合整数优化问题。在电力系统中,机组组合问题(UC)是一个典型的复杂决策问题,它涉及到如何在满足电力需求的同时,合理地开启或关闭发电机组,以最小化运营成本。由于UC问题包含离散变量(如机组启停状态)和连续变量(如发电量),因此通常被视为一个混合整数非线性规划(MINLP)问题。
简金宝和全然的研究中,他们首先将UC问题转换为一个更易于处理的形式——混合整数二次规划问题(MIQP)。这种转化使得问题的结构更加清晰,便于应用特定的优化工具。接下来,GBDM的核心步骤上场,它将MIQP问题分解为主问题和子问题。主问题是一个混合整数线性规划(MILP)问题,可以利用现有的高效MILP求解器进行求解;而子问题是一个非线性规划(NLP)问题,通常涉及原问题的非线性约束。
在GBDM中,主问题和子问题通过迭代方式交互求解。在每一步迭代中,主问题的解会生成Benders切割(这些切割是由子问题的不等式组成的),这些切割被添加到主问题中,限制了下一次迭代的搜索空间。这个过程不断重复,直到找到满足预设精度的最优解或者达到最大迭代次数。
通过数值仿真,该方法在不同规模的系统中表现出色,能够快速收敛并提供高精度的近似解。这表明GBDM在实际电力系统优化中具有很大的潜力,特别是在面对大规模电力系统和实时决策时,能够有效地减少计算时间和计算资源的需求。
广义Benders分解方法为电力系统中的机组组合问题提供了一个有效的解决方案,它结合了问题转化和优化分解的策略,提升了求解效率和解的质量。这项工作不仅对于电力系统自动化有直接的应用价值,也为其他领域面临类似复杂优化问题的研究者提供了有价值的参考。
2018-03-27 上传
2023-10-07 上传
2023-05-22 上传
2024-09-09 上传
2023-07-09 上传
2024-10-07 上传
weixin_38502762
- 粉丝: 0
- 资源: 925
最新资源
- 前端协作项目:发布猜图游戏功能与待修复事项
- Spring框架REST服务开发实践指南
- ALU课设实现基础与高级运算功能
- 深入了解STK:C++音频信号处理综合工具套件
- 华中科技大学电信学院软件无线电实验资料汇总
- CGSN数据解析与集成验证工具集:Python和Shell脚本
- Java实现的远程视频会议系统开发教程
- Change-OEM: 用Java修改Windows OEM信息与Logo
- cmnd:文本到远程API的桥接平台开发
- 解决BIOS刷写错误28:PRR.exe的应用与效果
- 深度学习对抗攻击库:adversarial_robustness_toolbox 1.10.0
- Win7系统CP2102驱动下载与安装指南
- 深入理解Java中的函数式编程技巧
- GY-906 MLX90614ESF传感器模块温度采集应用资料
- Adversarial Robustness Toolbox 1.15.1 工具包安装教程
- GNU Radio的供应商中立SDR开发包:gr-sdr介绍