贪婪算法与最小生成树
需积分: 10 148 浏览量
更新于2024-07-31
收藏 2.54MB PPT 举报
"该资源是一个关于贪心算法的PPT,主要内容涵盖了图的表示方法、最小生成树的概念以及贪心选择策略,特别是介绍了Prim's贪婪最小生成树算法,并讨论了最优子结构在解决此类问题中的应用。"
贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。这种策略通常用于求解最优化问题,但在每一步选择时并不考虑全局最优,只保证当前选择最优。
图的表示主要有两种方法:
1. 邻接矩阵:对于图G=(V,E),邻接矩阵A是一个二维数组,其中A[i][j]=1表示顶点i和顶点j之间有一条边,否则为0。邻接矩阵适用于稠密图,即边的数量接近于顶点数量的平方,因为它需要O(V^2)的空间。
2. 邻接链表:每个顶点v有一个链表,链表中的元素是与v相邻的顶点。邻接链表对于稀疏图(边的数量远小于顶点数量的平方)更为高效,因为它只需要O(V+E)的空间。
最小扩展树(Minimum Spanning Tree, MST)是图论中的一个重要概念,特别是在加权无向图中寻找一个连接所有顶点且总权重最小的树。这里提到了Prim's算法,它是一种贪心算法,用于构造最小生成树。Prim's算法的基本思想是从一个顶点开始,每次添加一条与当前树中顶点连接且权重最小的边,直到所有顶点都被包含在内。
最优子结构是贪心算法能够成功的一个关键特性,意味着一个问题的最优解可以通过其子问题的最优解来构造。在MST问题中,如果一棵树是另一棵树的子集,并且在原树中是MST,那么这个子树也是其子集的MST。这个性质为动态规划或贪心算法提供了基础。
在Prim's算法中,每次添加的边保证了当前生成树的最优性,但并没有解决重叠子问题,因为每次只考虑一条边的添加。然而,由于MST问题的特殊性,贪心策略可以有效解决问题,而不需要像动态规划那样系统地解决所有子问题。每次选取边时,贪心算法都选择当前未加入树的边中权重最小的一条,这样逐步构建的树保证了总权重最小。
这个PPT深入讲解了贪心算法在解决图论问题,特别是最小生成树问题中的应用,通过邻接矩阵和邻接链表展示了图的不同表示方式,并探讨了最优子结构如何支持贪心策略的有效性。
2011-07-17 上传
2009-01-08 上传
2019-05-17 上传
2019-12-31 上传
2021-12-17 上传
2013-04-22 上传
gao_guai
- 粉丝: 0
- 资源: 3
最新资源
- wordpress-design-guidelines::books:WordPress的
- 微信小程序:随机头像大全,多分类带历史记录小程序源码
- css-scanner:css 元素的扫描仪
- BIO
- watcher::label:观看文件系统,变量和数据记录中的更改
- 易语言-Mirror Driver 驱动截图,可制作远程协助、屏幕录像等
- bio-class-deb10:基于Debian 10的生物类的云初始化
- at-spi2-examples:在C,javascript(使用gobject-introspection)等中使用libatspi的示例
- Nestjs-tutorials-beginners::party_popper:Nestjs-tutorials-Beginners:telescope::bullseye::party_popper:
- RetroClient
- Inbox for Reddit-crx插件
- NCalculator-开源
- MyFinalProject12
- cdk-rest-api-integrations:适用于AWS服务(SNS,SQS等)的AWS CDK RestApi(又名Api网关)集成结构
- 2020第一季度热点行业薪酬报告-埃摩森-202004精品报告2020.rar
- 飘雪文字打印表白特效网站模板