掌握SciPy:数值与科学计算指南

需积分: 6 4 下载量 73 浏览量 更新于2024-07-17 收藏 3.28MB PDF 举报
"Learning_SciPy_for_Numerical_and_Scientific_Computing.pdf.pdf" 是一本关于使用SciPy进行数值和科学计算的教程。这本书旨在帮助读者掌握这个强大的Python库,以解决复杂的数学和科学问题。 在书中,首先介绍了什么是SciPy,它是一个基于NumPy构建的开源库,用于在Python环境中进行数值计算和科学计算。安装SciPy的方法也在这一部分讲解,通常可以通过Python的包管理器如pip或conda进行安装。SciPy的组织结构清晰,包含多个子模块,如优化、积分、统计、信号处理等,便于用户根据需求选择使用。 对于初学者,了解如何找到SciPy的文档至关重要。书中的这部分可能会指导读者如何访问官方文档、在线教程和社区资源,以便于在学习过程中查找帮助。此外,书中也强调了科学可视化的重要性,因为数据可视化是理解和解释复杂数据的关键步骤。 接下来,书中的第二章详细介绍了SciPy的顶级功能,包括对象基础、数据类型、数组操作、创建数组的函数、组合数组的函数、数组操纵的函数以及从数组提取信息的函数。这些内容构成了使用SciPy的基础,让读者能够对数组对象有深入理解并进行有效的操作。 第三章则专注于线性代数,讲解了如何使用SciPy创建矩阵、矩阵的方法、矩阵之间的操作、矩阵函数,特别是特征值问题和矩阵分解,比如奇异值分解(SVD)。这些工具在许多科学领域,如工程、物理学和数据科学中都有广泛的应用。 第四章关注数值分析,涉及特殊函数的评估、插值、积分、微分方程求解等主题。这对于进行数值模拟和数据分析的科学家和工程师来说是至关重要的。 书中的每一章都以总结结尾,帮助读者巩固所学知识,并鼓励读者反馈和提问,以提升学习体验。此外,书后还可能包含了错误报告的指南,以确保信息的准确性和完整性,并警告读者抵制盗版,尊重知识产权。 这本书为读者提供了一个全面的SciPy学习路径,无论你是刚接触科学计算的新手,还是寻求提升现有技能的专业人士,都能从中受益匪浅。通过学习和实践,你将能够利用SciPy的强大功能来解决各种数值计算和科学问题。
1712 浏览量
Scientific Computing with Python 3 English | 23 Dec. 2016 | ISBN: 1786463512 | 332 Pages | AZW3/MOBI/EPUB/PDF (conv) | 17.95 MB Key Features Your ultimate resource for getting up and running with Python numerical computations Explore numerical computing and mathematical libraries using Python 3.x code with SciPy and NumPy modules A hands-on guide to implementing mathematics with Python, with complete coverage of all the key concepts Book Description Python can be used for more than just general-purpose programming. It is a free, open source language and environment that has tremendous potential for use within the domain of scientific computing. This book presents Python in tight connection with mathematical applications and demonstrates how to use various concepts in Python for computing purposes, including examples with the latest version of Python 3. Python is an effective tool to use when coupling scientific computing and mathematics and this book will teach you how to use it for linear algebra, arrays, plotting, iterating, functions, polynomials, and much more. What you will learn The principal syntactical elements of Python The most important and basic types in Python The essential building blocks of computational mathematics, linear algebra, and related Python objects Plot in Python using matplotlib to create high quality figures and graphics to draw and visualize your results Define and use functions and learn to treat them as objects How and when to correctly apply object-oriented programming for scientific computing in Python Handle exceptions, which are an important part of writing reliable and usable code Two aspects of testing for scientific programming: Manual and Automatic About the Author Claus Fuhrer is a professor of scientific computations at Lund University, Sweden. He has an extensive teaching record that includes intensive programming courses in numerical analysis and engineering mathematics across various levels in many different countries and teaching environments. Claus also develops numerical software in research collaboration with industry and received Lund University's Faculty of Engineering Best Teacher Award in 2016. Jan Erik Solem is a Python enthusiast, former associate professor, and currently the CEO of Mapillary, a street imagery computer vision company. He has previously worked as a face recognition expert, founder and CTO of Polar Rose, and computer vision team leader at Apple. Jan is a World Economic Forum technology pioneer and won the Best Nordic Thesis Award 2005-2006 for his dissertation on image analysis and pattern recognition. He is also the author of "Programming Computer Vision with Python" (O'Reilly 2012). Olivier Verdier began using Python for scientific computing back in 2007 and received a PhD in mathematics from Lund University in 2009. He has held post-doctoral positions in Cologne, Trondheim, Bergen, and Umea and is now an associate professor of mathematics at Bergen University College, Norway. Table of Contents Getting Started Variables and Basic Types Container Types Linear Algebra – Arrays Advanced Array Concepts Plotting Functions Classes Iterating Error Handling Namespaces, Scopes, and Modules Input and Output Testing Comprehensive Examples Symbolic Computations - SymPy References