MATLAB系统辨识工具箱详解:参数模型与非参数辨识方法
版权申诉
131 浏览量
更新于2024-06-29
收藏 2.27MB PDF 举报
本资源是关于MATLAB第6章控制工程类工具箱介绍的详细内容,主要聚焦于系统辨识工具箱。MATLAB作为一种强大的数学软件,通过众多工具箱为不同领域的研究人员提供了方便快捷的工作环境。系统辨识工具箱在控制工程中扮演着关键角色,它支持参数模型和非参数模型的辨识,如ARX、ARMAX、BJ(Box-Jenkins)模型、状态空间模型和输入误差模型等。
参数模型是通过有限参数来近似系统动态的模型。例如,ARX模型(A(q)y(t)=B(q)u(t-nk)+e(t))、ARMAX模型(A(q)y(t)=B(q)u(t-nk)+C(q)e(t))、BJ模型利用转移函数形式描述输入和输出的关系,以及输入误差模型(A(q)y(t)=[B(q)/F(q)]u(t-nk)+e(t))。状态空间模型则采用状态变量和输入输出关系表达系统,如x(t+1)=Ax(t)+Bu(t), y(t)=Cx(t)+Du(t)+v(t),其中v(t)代表外部噪声。
系统辨识的过程包括实验设计,即确定测量输入和输出的策略;模型结构辨识,确定哪种类型的模型最适合描述系统;参数辨识,利用数据估计模型参数;以及模型检验,通过将模型预测与实际数据对比,评估模型的准确性和适用性。系统辨识工具箱提供图形用户界面,使得模型选择、数据处理、模型估计等步骤更加直观和便捷。
非参数模型,如脉冲响应模型和频域描述模型,不依赖于特定的参数化形式,而是直接描述系统的动态特性。通过这种方法,可以捕捉到系统更复杂的行为模式,尤其是在数据驱动的场景下。
总结来说,这个资源深入探讨了MATLAB系统辨识工具箱的核心功能,包括模型种类、辨识方法、验证过程以及用户界面的设计,对于从事控制工程或信号处理研究的用户来说,是不可或缺的学习资料。
2022-06-09 上传
2021-07-10 上传
2021-09-14 上传
2022-11-12 上传
点击了解资源详情
2021-09-30 上传
春哥111
- 粉丝: 1w+
- 资源: 5万+
最新资源
- 构建基于Django和Stripe的SaaS应用教程
- Symfony2框架打造的RESTful问答系统icare-server
- 蓝桥杯Python试题解析与答案题库
- Go语言实现NWA到WAV文件格式转换工具
- 基于Django的医患管理系统应用
- Jenkins工作流插件开发指南:支持Workflow Python模块
- Java红酒网站项目源码解析与系统开源介绍
- Underworld Exporter资产定义文件详解
- Java版Crash Bandicoot资源库:逆向工程与源码分享
- Spring Boot Starter 自动IP计数功能实现指南
- 我的世界牛顿物理学模组深入解析
- STM32单片机工程创建详解与模板应用
- GDG堪萨斯城代码实验室:离子与火力基地示例应用
- Android Capstone项目:实现Potlatch服务器与OAuth2.0认证
- Cbit类:简化计算封装与异步任务处理
- Java8兼容的FullContact API Java客户端库介绍