变分模态分解与蝙蝠算法-相关向量机在短期风速区间预测中的应用
10 浏览量
更新于2024-08-29
2
收藏 1.82MB PDF 举报
"基于变分模态分解和蝙蝠算法-相关向量机的短期风速区间预测"
本文探讨了短期风速预测的一种新方法,该方法旨在克服传统点预测方法无法体现风速随机性的局限性。研究中,作者提出了一个结合变分模态分解(VMD)和蝙蝠算法-相关向量机(BA-RVM)的区间预测模型,以提高预测精度和提供更精确的预测范围。
首先,变分模态分解技术被用来将原始风速序列分解为多个子序列,每个子序列反映了风速的不同动态模式。这一过程有助于捕捉风速变化的复杂性和非线性特征。接着,样本熵(SE)算法用于分析这些子序列,识别出具有代表性的3类分量,这有助于区分风速的不同行为模式。
然后,相关向量机(RVM)被应用到每个分量上,建立独立的预测模型。RVM是一种高效的学习算法,它可以有效地处理小样本数据,且具有较好的泛化能力,适用于风速预测这种复杂问题。通过RVM,每个分量的未来变化可以被预测。
为了进一步提升预测精度,蝙蝠算法(BA)被引入来优化相关向量机的参数。BA是一种全局优化算法,灵感来源于蝙蝠的生物声波定位行为,能够高效搜索最佳解决方案空间,从而改善模型性能。
最后,各个分量的预测结果被叠加求和,生成一个置信水平下的总体区间预测。这种方法不仅给出了预测值,还提供了预测值可能落入的区间,这对于风电场的管理和电网调度具有重要价值。
与其他区间预测方法比较,如Bootstrap重抽样法、概率密度预测、分位数回归、极限学习机(ELM)、集对分析等,该方法在预测精度、区间覆盖率和区间宽度控制上表现更优。尽管贝叶斯概率预测方法能提供预测量的分布特性,但在某些区域可能存在区间过宽的问题,而本文提出的方法有效地解决了这个问题。
本文提出的BA-RVM模型结合了VMD的模式分解能力和BA的优化能力,提高了短期风速预测的准确性,同时提供了预测区间,为风电并网和电网管理提供了更为全面的预测信息,有助于降低决策风险。这种方法对于应对风能这种可再生能源的不确定性,以及推动智能电网的发展具有重要意义。
2023-12-25 上传
2023-12-25 上传
2024-02-08 上传
2021-09-12 上传
2023-12-25 上传
2023-12-25 上传
2023-12-25 上传
2023-03-10 上传
109 浏览量
weixin_38702047
- 粉丝: 3
- 资源: 967
最新资源
- MATLAB实现小波阈值去噪:Visushrink硬软算法对比
- 易语言实现画板图像缩放功能教程
- 大模型推荐系统: 优化算法与模型压缩技术
- Stancy: 静态文件驱动的简单RESTful API与前端框架集成
- 掌握Java全文搜索:深入Apache Lucene开源系统
- 19计应19田超的Python7-1试题整理
- 易语言实现多线程网络时间同步源码解析
- 人工智能大模型学习与实践指南
- 掌握Markdown:从基础到高级技巧解析
- JS-PizzaStore: JS应用程序模拟披萨递送服务
- CAMV开源XML编辑器:编辑、验证、设计及架构工具集
- 医学免疫学情景化自动生成考题系统
- 易语言实现多语言界面编程教程
- MATLAB实现16种回归算法在数据挖掘中的应用
- ***内容构建指南:深入HTML与LaTeX
- Python实现维基百科“历史上的今天”数据抓取教程