CUDA编程新手指南:掌握GPU并行计算与MATLAB基础

需积分: 9 2 下载量 68 浏览量 更新于2024-11-07 收藏 70.17MB ZIP 举报
资源摘要信息:"MATLAB基本运算程序代码与CUDA编程学习指南" 在给定文件信息中,我们可以提炼出以下关键知识点: 1. MATLAB基本运算程序代码:MATLAB是一种高级编程语言,被广泛应用于工程计算、数据分析、算法开发等领域。它拥有强大的矩阵和数组处理能力,以及直观易懂的语法。MATLAB的基本运算程序代码通常包括各种数学运算、数据分析、函数绘图、算法实现等。 2. CUDA编程:CUDA是NVIDIA推出的一种GPU计算平台和编程模型,允许开发者使用C、C++和Python等高级语言进行GPU编程。CUDA编程特别适合处理高度并行化的计算任务,能够显著提高程序的运行效率。 3. CUDA和C/C++结合使用:在CUDA编程中,C/C++是宿主语言,而CUDA提供了一套扩展的API,使得开发者可以在GPU上执行并行计算。程序员通常会用C/C++编写程序的主体部分,而使用CUDA语言编写GPU上的并行计算核心。 4. GPU并行计算应用:GPU(图形处理单元)具备大量并行处理核心,这使得它在处理并行计算任务时,如图形渲染、科学计算、数据分析等,比传统的CPU更加高效。利用CUDA编程,可以让开发者充分利用GPU的强大并行计算能力。 5. CUDA编程初学者指南:本书作为初学者指南,旨在帮助读者理解CUDA中的常规GPU操作和编程模式,揭示GPU编程和CPU编程之间的差异,指导如何分析GPU应用程序性能并进行优化。 6. GPU编程性能分析与优化:在GPU编程中,性能分析是一个关键步骤。通过性能分析工具,开发者可以找到程序中的瓶颈,并据此采取优化策略,提高程序效率。 7. GPU编程工具:本书还会介绍一系列GPU编程、性能分析和调试工具,帮助开发者更有效地进行GPU程序开发。 8. 并行编程算法实现:掌握并行编程算法是进行有效GPU编程的前提。本书将指导读者如何实现并行算法,并展示如何在多GPU和多节点环境中扩展GPU加速的应用程序。 9. 加速库、Python和OpenACC:除了CUDA本身,书中还将深入探讨如何利用加速库、Python编程语言以及OpenACC标准,进一步加深对GPU编程的理解。 10. 深度学习与GPU加速:本书还涉及GPU在深度学习中的应用,特别是如何使用GPU加速卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型的训练过程。 11. 代码存储库组织:所有相关的代码示例都被组织在以章节命名的文件夹中,例如"Chapter02",方便读者学习和查找。 12. 系统开源:标签表明该资源是开源的,意味着任何人都可以自由地使用、修改和分发代码,以便更好地学习和研究。 以上就是从文件信息中提取出的关键知识点。通过这些知识点,读者可以获得对MATLAB基础编程、CUDA编程原理及应用的深入理解,并且学习如何利用GPU的强大计算能力进行高效的计算任务处理。
2014-09-09 上传
CUDA programming: a developer's guide to parallel computing with GPUs. by Shane Cook. Over the past five years there has been a revolution in computing brought about by a company that for successive years has emerged as one of the premier gaming hardware manufacturersdNVIDIA. With the introduction of the CUDA (Compute Unified Device Architecture) programming language, for the first time these hugely powerful graphics coprocessors could be used by everyday C programmers to offload computationally expensive work. From the embedded device industry, to home users, to supercomputers, everything has changed as a result of this. One of the major changes in the computer software industry has been the move from serial programming to parallel programming. Here, CUDA has produced great advances. The graphics processor unit (GPU) by its very nature is designed for high-speed graphics, which are inherently parallel. CUDA takes a simple model of data parallelism and incorporates it into a programming model without the need for graphics primitives. In fact, CUDA, unlike its predecessors, does not require any understanding or knowledge of graphics or graphics primitives. You do not have to be a games programmer either. The CUDA language makes the GPU look just like another programmable device. Throughout this book I will assume readers have no prior knowledge of CUDA, or of parallel programming. I assume they have only an existing knowledge of the C/C++ programming language. As we progress and you become more competent with CUDA, we’ll cover more advanced topics, taking you from a parallel unaware programmer to one who can exploit the full potential of CUDA. For programmers already familiar with parallel programming concepts and CUDA, we’ll be discussing in detail the architecture of the GPUs and how to get the most from each, including the latest Fermi and Kepler hardware. Literally anyone who can program in C or C++ can program with CUDA in a few hours given a little training. Getting from novice CUDA programmer, with a several times speedup to 10 times–plus speedup is what you should be capable of by the end of this book. The book is very much aimed at learning CUDA, but with a focus on performance, having first achieved correctness. Your level of skill and understanding of writing high-performance code, especially for GPUs, will hugely benefit from this text. This book is a practical guide to using CUDA in real applications, by real practitioners. At the same time, however, we cover the necessary theory and background so everyone, no matter what their background, can follow along and learn how to program in CUDA, making this book ideal for both professionals and those studying GPUs or parallel programming.