层次分析法:一致性检验与旅游地决策

需积分: 31 1 下载量 70 浏览量 更新于2024-08-22 收藏 612KB PPT 举报
一致性检验-层次分析法是一种定性与定量相结合的决策分析工具,由Saaty在1970年代提出,用于解决日常生活和工作中涉及多个因素的复杂决策问题。它特别适用于那些因素的重要性难以量化,但需要通过人的主观判断进行比较的情况,如选择旅游地时考虑景色、费用、居住条件等因素。 层次分析模型的核心是将决策问题划分为三个层次:目标层(O,如选择旅游地)、准则层(C,如景色、费用等)和方案层(P,如桂林、黄山等)。模型通过构建层次结构并进行成对比较来确定各因素之间的相对重要性。成对比较是基于一定的相对尺度,例如,1代表两个因素完全相同的重要性,2代表第一个因素稍优于第二个,依次递增。 对于每一个层次,需要形成一个成对比较矩阵A,其中元素a_{ij}表示准则C_i相对于准则C_j的重要性比率。矩阵A应满足正互反阵的性质,即元素值在1和-1之间,且每行和每列元素之和为1。如果矩阵A具有唯一非零特征根n,那么它是n阶一致阵,表明所有比较都是合理的。 为了评估一致性,引入了随机一致性指标RI(Randomness Index),其值根据矩阵的阶数n有不同的标准值,例如,当n=9时,RI=1.51。一致性比率CR(Consistency Ratio)是实际一致性指标CI(Consistency Index)除以RI的比值。如果CR小于0.1,就认为一致性检验通过,意味着矩阵A的判断相对一致,可以信赖。 在进行成对比较时,可能会出现不一致的情况,这时需要调整矩阵A以达到一致性。如果发现不一致,可以通过重新比较或调整权值来降低CI,直到CR低于预设阈值。整个过程体现了层次分析法的系统化和层次化特点,能够帮助决策者量化主观判断,得出关于各个方案对目标相对重要性的定量结论。 总结来说,层次分析法是解决多级决策问题的有效工具,通过定性和定量的结合,确保了决策的合理性与客观性,尤其在不确定性高、因素众多的决策环境中具有显著优势。理解并熟练运用这一方法,可以帮助我们在实际生活中做出更明智的选择。