绕任意点的旋转变换与组合变换在计算机图形学中的应用
下载需积分: 42 | PDF格式 | 5.47MB |
更新于2024-08-07
| 153 浏览量 | 举报
"绕平面上任一点的旋转变换-plc编程手册,计算机图形学,C++,MFC"
在计算机图形学中,二维组合变换是一种重要的技术,它允许我们执行相对于平面上任意点或直线的图形变换。这种变换通常涉及到复杂的几何运算,通过将多个基本变换(如平移、旋转、缩放)组合起来,形成一个复合变换。这种变换的实现需要用到矩阵运算,尤其是矩阵相乘,以便将一系列基本变换串联起来。
在给定的描述中,特别提到了绕平面上任一点的旋转变换。对于一个矩形ABCD,如果要绕着顶点A旋转一个角度θ,首先需要将图形的位置调整到以A为原点,这样就可以直接应用标准的旋转矩阵进行旋转。旋转完成后,再将整个图形平移到原来的位置。这个过程涉及到两个基本变换:平移和旋转,它们可以通过矩阵乘法合并成一个组合变换。
矩阵相乘的函数`MatrixXMatrixFor2D`用于执行两个2D矩阵的乘法操作,这是构建组合变换的关键步骤。矩阵乘法遵循特定的规则,每个新矩阵的元素是由输入矩阵对应行和列元素的乘积之和得出的。在这个函数中,遍历了两个输入矩阵的所有元素,计算出结果矩阵的每个元素。
计算机图形学是一门多学科交叉的科学,它结合了传统图学、应用数学和计算机科学,广泛应用于CAD、动画、虚拟现实等领域。了解计算机图形学可以帮助我们理解计算机如何生成和处理图形,提高对这门学科的兴趣,并为进一步的学习和研究打下基础。
在计算机图形学中,图形和图像有所区别。图形通常指的是通过数学方式描述的对象,包含几何元素(如点、线、面)和非几何属性(如颜色、线条样式)。而图像则可以更宽泛,包括自然场景、照片以及数学描述的图形。在计算机图形学中,我们关注的是如何使用计算机有效地表示和处理这些图形,以及如何在显示器上呈现它们。
总结来说,这篇资料涉及了绕平面上任一点的旋转变换,这是通过组合变换实现的,需要用到2D矩阵的乘法函数。同时,它还介绍了计算机图形学的基础概念,包括图形与图像的区别,以及该学科的应用领域和重要性。这些知识点对于理解和实践计算机图形学编程,特别是在C++环境中,如MFC框架下编写图形程序,具有非常实际的指导价值。
相关推荐
柯必Da
- 粉丝: 42
- 资源: 3762
最新资源
- 行业分类-设备装置-一种接入风储互补微网的配电网可靠性评估方法.zip
- is-url-superb:检查字符串是否是URL
- awesome-widgets:简约 Plasmoid 集
- 词法分析器(java版有UI界面).zip
- s106-admin
- LeetCode
- 送货单管理 宏达送货单管理系统 v1.0
- dna-barcode:查找和分析DNA序列文件中的条形码-开源
- R-project
- 行业分类-设备装置-一种接管组合结构.zip
- 遥感影像融合_数字图像处理的matlab程序(PCA变换融合,HIS变换融合,Brovery和乘积变换融合)
- shinyMA:对点击点做出React的闪亮图示例
- fexamples:简单的fortran(f77)示例
- 史上最全html学习资料免费领,网盘自取
- 团队
- 科学选择铁渣处理生产工艺,实现铁渣综合处理利用.rar