SVM非线性回归Matlab实现及参数优化
5星 · 超过95%的资源 需积分: 50 101 浏览量
更新于2024-09-11
1
收藏 3KB TXT 举报
本资源是一段用于支持向量机(Support Vector Machine, SVM)非线性回归的通用Matlab程序。SVMNR.m文件提供了一种方法来解决非线性回归问题,利用SVM算法对输入数据进行拟合。以下是对该程序的重要部分进行详细解读:
1. **函数定义与输入参数**:
- 函数名为SVMNR,接受输入参数X(输入特征矩阵),Y(目标变量向量),Epsilon(容忍误差或松弛因子),C(正则化参数),以及D(核函数的带宽)。这些参数在非线性回归中起到关键作用。
2. **核函数的选择**:
- 程序使用了径向基函数(Radial Basis Function, RBF)作为核函数,通过计算样本点之间的欧氏距离的倒数平方(K(i,j) = exp(-(sum((xi-xj).^2)/D)))来处理非线性关系。不同的D值决定了函数的平滑程度,较小的D值会使得决策边界更加复杂,适应更复杂的模式。
3. **构造Hessian矩阵**:
- H矩阵是SVM优化问题中的核心部分,它包含了对称核矩阵K和其转置。通过对称化,Hessian矩阵有助于确保优化过程的稳定性。
4. **设置约束条件**:
- Aeq和Beq定义了线性等式约束,即权重向量(Alpha1, Alpha2)之和等于零,这是SVM的拉格朗日乘子法的要求。lb和ub分别设置了权重的下界和上界,以控制模型的复杂度。
5. **求解优化问题**:
- 使用Matlab的quadprog函数,或者fmincon函数来求解二次规划问题,找到最优的Alpha1, Alpha2, Alpha(SVM的拉格朗日乘子)以及可能的最优误差边界Flag。Quadprog函数支持大规模问题,Display选项被设置为'off',以减少输出信息。
6. **版权与联系方式**:
- 提供了作者Cheng Aihua的信息,包括所在学校和邮箱地址,以及关于版权和保留声明。
这段Matlab代码提供了一个实现支持向量机非线性回归的基本框架,通过选择合适的核函数、构建优化问题并求解,可以用来拟合和预测非线性关系的数据。对于希望在Matlab环境中应用SVM进行非线性回归的用户来说,这是一个实用的工具。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2024-08-08 上传
2024-08-08 上传
2014-07-25 上传
2021-09-14 上传
2021-09-14 上传
2022-07-05 上传
nini9999
- 粉丝: 0
- 资源: 2
最新资源
- 俄罗斯RTSD数据集实现交通标志实时检测
- 易语言开发的文件批量改名工具使用Ex_Dui美化界面
- 爱心援助动态网页教程:前端开发实战指南
- 复旦微电子数字电路课件4章同步时序电路详解
- Dylan Manley的编程投资组合登录页面设计介绍
- Python实现H3K4me3与H3K27ac表观遗传标记域长度分析
- 易语言开源播放器项目:简易界面与强大的音频支持
- 介绍rxtx2.2全系统环境下的Java版本使用
- ZStack-CC2530 半开源协议栈使用与安装指南
- 易语言实现的八斗平台与淘宝评论采集软件开发
- Christiano响应式网站项目设计与技术特点
- QT图形框架中QGraphicRectItem的插入与缩放技术
- 组合逻辑电路深入解析与习题教程
- Vue+ECharts实现中国地图3D展示与交互功能
- MiSTer_MAME_SCRIPTS:自动下载MAME与HBMAME脚本指南
- 前端技术精髓:构建响应式盆栽展示网站