SVM非线性回归Matlab实现及参数优化
5星 · 超过95%的资源 需积分: 50 139 浏览量
更新于2024-09-11
1
收藏 3KB TXT 举报
本资源是一段用于支持向量机(Support Vector Machine, SVM)非线性回归的通用Matlab程序。SVMNR.m文件提供了一种方法来解决非线性回归问题,利用SVM算法对输入数据进行拟合。以下是对该程序的重要部分进行详细解读:
1. **函数定义与输入参数**:
- 函数名为SVMNR,接受输入参数X(输入特征矩阵),Y(目标变量向量),Epsilon(容忍误差或松弛因子),C(正则化参数),以及D(核函数的带宽)。这些参数在非线性回归中起到关键作用。
2. **核函数的选择**:
- 程序使用了径向基函数(Radial Basis Function, RBF)作为核函数,通过计算样本点之间的欧氏距离的倒数平方(K(i,j) = exp(-(sum((xi-xj).^2)/D)))来处理非线性关系。不同的D值决定了函数的平滑程度,较小的D值会使得决策边界更加复杂,适应更复杂的模式。
3. **构造Hessian矩阵**:
- H矩阵是SVM优化问题中的核心部分,它包含了对称核矩阵K和其转置。通过对称化,Hessian矩阵有助于确保优化过程的稳定性。
4. **设置约束条件**:
- Aeq和Beq定义了线性等式约束,即权重向量(Alpha1, Alpha2)之和等于零,这是SVM的拉格朗日乘子法的要求。lb和ub分别设置了权重的下界和上界,以控制模型的复杂度。
5. **求解优化问题**:
- 使用Matlab的quadprog函数,或者fmincon函数来求解二次规划问题,找到最优的Alpha1, Alpha2, Alpha(SVM的拉格朗日乘子)以及可能的最优误差边界Flag。Quadprog函数支持大规模问题,Display选项被设置为'off',以减少输出信息。
6. **版权与联系方式**:
- 提供了作者Cheng Aihua的信息,包括所在学校和邮箱地址,以及关于版权和保留声明。
这段Matlab代码提供了一个实现支持向量机非线性回归的基本框架,通过选择合适的核函数、构建优化问题并求解,可以用来拟合和预测非线性关系的数据。对于希望在Matlab环境中应用SVM进行非线性回归的用户来说,这是一个实用的工具。
2024-08-08 上传
2024-08-08 上传
2023-07-16 上传
2024-04-25 上传
2024-10-30 上传
2024-04-06 上传
2023-10-27 上传
2023-11-27 上传
nini9999
- 粉丝: 0
- 资源: 2
最新资源
- clean-node-api-uddemy:清洁架构课程-Udemy(Rodrigo Manguinho)
- robo-friends
- Coding in browser-crx插件
- clustering-traj:接收分子动力学或蒙特卡洛轨迹并执行团聚聚类以对相似结构进行分类的Python脚本
- ProjectEuler100
- AsyncTcpServer.rar_网络编程_C#_
- 波动性:高级内存取证框架
- playlistify:根据sputnikmusic.com上列出的新专辑将专辑添加到您的Spotify播放列表中
- REI Calcualtor-crx插件
- django-training:Eduyear的Django培训
- 高性能mysql第三版word+pdf版电子文件
- VideoCapture.zip_视频捕捉/采集_C#_
- 投资组合:Jack Kelly的投资组合网站
- Jobgetabu.github.io:关于我
- Brandlive Screen Sharing-crx插件
- muacm.org:Medicaps ACM学生章节的官方网站