小数据集MRI重建:神经网络优化算法探索
版权申诉
164 浏览量
更新于2024-08-07
收藏 4.01MB PDF 举报
"该资源是一篇来自浙江大学的博士学位论文,主要研究了小数据集磁共振成像(MRI)的神经网络重建算法。作者卞昕在生物医学工程领域,由汪元美教授指导,完成于2003年5月1日。论文探讨了如何利用神经网络理论和优化理论解决MRI重建中的数据不足问题,提出两类稳定的人工智能重建算法,旨在提高信噪比和分辨率,减少Gibbs伪影,以改善图像质量。"
在MRI成像过程中,由于物理限制和时间约束,通常只能对数据进行有限采样,这导致了数据集较小,传统的傅立叶重建方法会出现严重的伪迹。论文指出,使用不完全采样数据进行图像重建是一个不适定的逆问题,需要通过适当的补充约束将其转化为适定问题,从而找到最佳解。
论文详细介绍了MRI的基础原理,包括Bloch方程和基本成像算法,以及离散FID信号模型。接着,论文分析了图像重建问题,特别是傅立叶方法的局限性和Gibbs伪迹的成因,并简述了投影重建算法。
在第四章,作者提出了将MRI重建问题转化为最大熵问题,结合Hopfield神经网络模型与最大熵原理,提出了一种共轭复数最大熵神经网络重建算法。该算法利用MRI图像的熵作为代价函数,寻找数据一致性约束下的最平滑图像。
第五章则探讨了基于外推理论的重建算法,利用多层感知器作为预测器,通过信赖域策略的自适应动量扩展LM-BP感知器进行重建,旨在通过外推观测数据提高重建效果。
这篇论文深入研究了在小数据集条件下,如何运用神经网络技术改进MRI图像的重建质量,克服传统方法的局限,为生物医学工程领域提供了新的解决方案。这些算法对于提高诊断准确性,尤其是在资源有限的环境中,具有重要的实践意义。
2024-03-04 上传
2022-04-15 上传
2021-08-23 上传
2021-08-26 上传
2021-09-26 上传
2023-02-23 上传
2022-07-12 上传
2022-04-17 上传
programcx
- 粉丝: 44
- 资源: 13万+
最新资源
- WordPress作为新闻管理面板的实现指南
- NPC_Generator:使用Ruby打造的游戏角色生成器
- MATLAB实现变邻域搜索算法源码解析
- 探索C++并行编程:使用INTEL TBB的项目实践
- 玫枫跟打器:网页版五笔打字工具,提升macOS打字效率
- 萨尔塔·阿萨尔·希塔斯:SATINDER项目解析
- 掌握变邻域搜索算法:MATLAB代码实践
- saaraansh: 简化法律文档,打破语言障碍的智能应用
- 探索牛角交友盲盒系统:PHP开源交友平台的新选择
- 探索Nullfactory-SSRSExtensions: 强化SQL Server报告服务
- Lotide:一套JavaScript实用工具库的深度解析
- 利用Aurelia 2脚手架搭建新项目的快速指南
- 变邻域搜索算法Matlab实现教程
- 实战指南:构建高效ES+Redis+MySQL架构解决方案
- GitHub Pages入门模板快速启动指南
- NeonClock遗产版:包名更迭与应用更新