使用VASP进行磁性材料计算:Ni的铁磁性

需积分: 25 23 下载量 64 浏览量 更新于2024-08-07 1 收藏 109KB PDF 举报
"该文介绍了如何使用VASP进行材料磁性性质的计算,特别是铁磁性的计算。文章提到了磁性计算与非磁性计算的主要区别在于设置ISPIN和MAGMOM参数,并建议在计算时使用PAW势以获得更准确的结果。作者通过一个具体的例子,展示了计算面心立方结构镍(fcc Ni)的铁磁性所需的INCAR、KPOINTS和POSCAR文件内容。" 在使用VASP进行材料磁性性质计算时,关键在于理解和设置INCAR文件中的参数。标题和描述中提到的核心知识点包括: 1. **ISPIN参数**:ISPIN = 2 表示开启磁性计算。在非磁性计算中,ISPIN通常设为1,而当需要考虑材料的磁性质时,如铁磁、反铁磁或亚铁磁,需要将它设置为2。 2. **MAGMOM参数**:MAGMOM用于设置材料中原子的初始磁矩,这对于确定材料的磁构型至关重要。对于铁磁性计算,所有原子的MAGMOM值应相同;在反铁磁或亚铁磁情况下,相邻原子的磁矩方向会相反或部分相反。 3. **PAW势**:PAW( projector augmented wave)势在磁性计算中被推荐使用,因为它能提供更精确的结果。PAW方法通过构造电子波函数的近似来处理核心电子,从而更好地模拟电子的相互作用。 4. **KPOINTS和POSCAR文件**:这两者在磁性和非磁性计算中保持不变,KPOINTS定义了布里渊区的采样网格,POSCAR包含晶体结构信息。 5. **GGA参数**:GGA(Generalized Gradient Approximation)是指交换相关泛函,GGA = PE 指Perdew-Burke-Ernzerhof泛函,VOSKOWN参数在此时可以选加,用于指定使用Vosko-Wilk-Nusair关联泛函。 6. **其他INCAR参数**:例如,ENCUT定义了平面波截断能量,ISMEAR用于设定电子占据的近似方法,PREC设定精度级别。 7. **VASP软件的使用协议**:在实际操作中,要注意遵守软件的版权协议,尤其是商业版本的使用限制。 通过理解并正确设置这些参数,可以使用VASP进行各种磁性材料的计算,包括但不限于铁磁性、反铁磁性和非共线磁性等。同时,对于更复杂的情况,可能还需要设置其他高级参数,如进行非共线磁性计算时的NONCOLLINEAR关键词,或者考虑自旋轨道耦合(SOC)时的相关设置。

Rab GTPases serve as master regulators of membrane trafficking. They can be activated by guanine nucleotide exchange factors (GEF) and be inactivated by GTPase-activating proteins (GAPs). The roles of some GAPs have been explored in Saccharomyces cerevisiae, but are largely unknown in filamentous fungi. Here, we investigated the role of GAP Gyp3 gene, an ortholog of S. cerevisiae Gyp3, in an entomopathogenic fungus, Metarhizium acridum. We found that MaGyp3 is mainly localized to the endoplasmic reticulum (ER) of vegetative hyphae, nuclei of mature conidia, and both ER and nuclei in invasive hyphae. Lack of MaGyp3 caused a decreased tolerance to hyperosmotic stress, heat-shock and UV-B radiation. Moreover, the ΔMaGyp3 mutant showed a significantly decreased pathogenicity owing to delayed germination, reduced appressorium-mediated penetration and impaired invasive growth. Loss of MaGyp3 also caused impaired fungal growth, advanced conidiation and defects in utilization of carbon and nitrogen sources, while overexpression of MaGyp3 exhibited delayed conidiation on nutrient-rich medium and conidiation pattern shift from microcycle conidiation to normal conidiation on nutrient-limited medium. Mavib-1, a tanscription factor invloved in conidiation by affecting nutrient utilizaiton, can directly bind to the promoter of MaGyp3. ΔMaGyp3 and ΔMavib-1 mutants shared similar phenotypes, and overexpression mutants of MaGyp3 and Mavib-1 (Mavib-1-OE) exhibited similar phenotypes in growth, conidiation and pathogenicity. Reintroduction of the Magyp3 driven by strong promoter gpd in ΔMavib-1 mutant recovered the defects in growth and conidiation for dysfunction of Mavib1. Taken together, our findings uncovered the role of GAP3 in a filamentous pathogenic fungus and and illustrated the upstream regulatory mechanism by direct interaction with Mavib-1.请用nature杂志的风格润色成学术论文的形式。

142 浏览量