Java基础知识与陷阱:奇偶判断、浮点数精度与整数溢出
需积分: 9 85 浏览量
更新于2024-11-02
收藏 384KB DOC 举报
"Java基础知识与常见问题解析"
Java编程语言中,理解基础特性和常见的陷阱是至关重要的。在处理数值表达式时,需要注意一些细节。例如,判断一个整数是否为奇数,通常初学者可能会使用`i%2==1`,但这种方式在处理负奇数时会出现错误。正确的做法是使用`i%2!=0`,或者更高效的位运算方式`i&1!=0`来判断。这是因为位运算符`&`在进行按位与操作时,会保留数值的二进制表示中的最后一位,对于奇数来说,这一位总是1。
当涉及到小数的精确计算,Java的`double`类型会带来精度问题。如示例所示,`2.00-1.10`的结果并非0.9,而是由于二进制浮点表示的局限性导致的近似值。这是因为不是所有十进制小数都能精确表示为二进制浮点数。对于货币计算,直接使用二进制浮点数是不合适的,因为无法精确表示分数形式的货币值。解决这个问题的方法之一是使用整数来表示货币的最小单位,如分,即`200-110`。另一种方法是使用`BigDecimal`类,它支持任意精度的算术运算。创建`BigDecimal`对象时,应避免使用`BigDecimal(double)`构造器,因为这会导致精度损失,应使用`BigDecimal(String)`构造器,例如`new BigDecimal("2.0").subtract(new BigDecimal("1.10"))`,这样可以得到期望的0.9结果。
在比较浮点数时,直接使用`==`或`!=`可能会因为精度问题导致误判。因此,应该使用`BigDecimal`的`compareTo`方法来比较浮点数的大小,以确保准确无误。
在处理整数运算时,要注意整数溢出的问题。例如,计算一天的微秒数时,`24*60*60*1000*1000`这个表达式在执行过程中可能会因为`int`类型的溢出而导致结果错误。为避免这种问题,应在计算开始前就确保至少有一个操作数是`long`类型,或者在计算过程中显式地将中间结果转换为`long`,例如`((long)24)*60*60*1000*1000`。
理解Java的基础特性,特别是数值处理和类型转换的规则,可以帮助开发者避免常见的编程错误,提高代码的准确性和可靠性。在实际开发中,对这些细节的掌握将直接影响到程序的正确性和效率。
225 浏览量
128 浏览量
137 浏览量
321 浏览量
136 浏览量
268 浏览量
198 浏览量
2023-12-06 上传
134 浏览量
coolsunwind83
- 粉丝: 3
- 资源: 5
最新资源
- minishift-demo:使用minishift进行本地开发的演示
- 初级java笔试题-awesome-stars:由stargazed整理的我的GitHub星星列表
- docker-plex:Ubuntu Groovy上的Plex
- jdk1.8.0_241.zip
- 商品管理
- Homitech
- DuckCreekAutomation:DuckCreekAutomation
- 首尔大卖场观感:从顾客需求出发提升服务
- prelude-ls:prelude.ls是一个面向功能的实用程序库-功能强大且灵活,几乎所有功能都可以使用。 它是用http编写的,并且是http的推荐基础库
- java笔试题算法-lbfgsb_wrapper:FortranL-BFGS-B算法的Java包装器
- JavaScriptViewEngine-master.zip
- 2019 5G+智能工厂网络及应用白皮书精品报告2020.rar
- malves0
- 销售点管理系统简介——卖场管理
- Công Cụ Đặt Hàng Của Vận Tải Hoa Kiều-crx插件
- gdblib:Go库,用于使用MI接口与gdb调试器接口