MATLAB单纯形法详解:对偶问题性质与实例分析
需积分: 50 120 浏览量
更新于2024-07-27
收藏 553KB DOC 举报
本资源提供了一段关于Matlab中单纯形法的详细解释和应用,主要涉及对偶线性规划问题的相关理论。首先,通过定理1,我们学习了如何将一个线性规划问题(LP)的对偶问题形式化。原问题(2.8)的对偶问题(2.9)是通过将约束条件取反、目标函数方向反转以及矩阵转置得到的,具体形式如:
原问题(2.8):
\[ \max c^Tx \quad \text{s.t.} \quad Ax \leq b, \ x \geq 0 \]
对偶问题(2.9):
\[ \min -y^Tb \quad \text{s.t.} \quad A^Ty \geq c, \ y \geq 0 \]
定理2阐述了两个问题的可行性与目标函数值的关系:若原问题和对偶问题都有可行解,那么它们的目标函数值存在界限。例如,原问题的最大值不会超过对偶问题的最小值的上界,反之亦然。
接着,通过例1演示了如何估计和验证对偶问题目标函数值的界限,以及定理2的应用。原问题和对偶问题的实例分别为:
\[ \max 3x_1 + 4x_2 \quad \text{s.t.} \quad 2x_1 + x_2 \leq 10, \ x_1, x_2 \geq 0 \]
\[ \min -10y_1 - 15y_2 \quad \text{s.t.} \quad 2y_1 + 4y_2 \geq 3, \ y_1, y_2 \geq 0 \]
定理3,即对偶定理,表明如果一个问题有最优解,那么它的对偶问题也一定有最优解,而且两者的目标函数值相等。这证明了对偶问题在优化过程中的重要性,因为可以通过解决一个更易处理的问题(如对偶问题)来获取原始问题的最优解。
最后,给出的证据包括一个最优解的检验数表示(2.10),这是单纯形法求解过程中关键的步骤,它有助于确定变量的更新方向和步骤,直到达到最优解或证明无解。
总结来说,这段资源详细介绍了如何利用Matlab实现单纯形法求解线性规划的对偶问题,包括问题的转换、对偶性质的证明以及实际问题的应用示例。这对于理解和使用Matlab解决线性规划优化问题具有很高的参考价值。
1459 浏览量
164 浏览量
1508 浏览量
248 浏览量
259 浏览量
259 浏览量
1508 浏览量
208 浏览量
2022-07-15 上传

yangdi3361185
- 粉丝: 0
最新资源
- nitroproof:伪造硝基服务器防弹命令与操作指南
- Flash 8 中文教程手册:全面入门指南
- USB Redirector 6.0 汉化版:实现USB设备远程共享
- C#实现:在Windows窗体下探索生命游戏的奥秘
- 7805与7905封装的Tob263:深入解析与应用
- STM32旋转倒立摆控制源码解析
- z-tree增删改查实现与右键菜单仿IMO办公软件教程
- 深入解读EXFAT文件系统及其存储原理
- Extjs4中文API文档发布:汉化80%快速易用
- 摇不停DJ舞曲网:官方免费高音质在线播放器
- TortoiseSVN 1.8.8.25755版本发布:免费开源的版本控制客户端
- Python网络编程:掌握socket编程的要点
- MATLAB如何高效读取txt文件方法详解
- Unigui按钮特效实现与Delphi应用技巧
- Android界面优化:深入应用XML Shape技术
- 霹雳游侠制作的绿色网络电台软件体验