硅基高功率拉曼光纤激光器极端频移实验研究

0 下载量 4 浏览量 更新于2024-08-28 收藏 474KB PDF 举报
本文研究了基于二氧化硅光纤的高功率拉曼光纤激光(Raman Fiber Laser, RFL)在极端频率位移现象。作者团队通过实验手段对这种高性能RFL进行了深入探讨,其核心设计是利用一对具有固定且匹配中心波长(1120纳米)的光纤布拉格光栅,结合31米长的保持线性偏振的(Polarization Maintaining, PM)被动光纤作为拉曼增益介质。驱动光源是一个自行开发的高功率、线性极化的(Linearly Polarized, LP)波长可调的主振荡器功率放大器(Master Oscillator Power Amplifier, MOPA)系统,其调谐范围约为25纳米。 实验的目的是为了理解和控制在高功率操作条件下,由于Raman散射效应可能导致的频率漂移问题。Raman效应是指在光纤中,当泵浦光与介质相互作用时,部分光能被转换成新的光谱线,这些新线通常分布在泵浦光的两侧,导致了激光频率的微小变化。在高功率激光系统中,这种频率漂移可能对激光性能产生负面影响,如光束质量下降、输出功率波动等。 通过精心设计的实验配置,研究者们能够有效地测量并分析这种极端频率位移的发生机制及其对激光稳定性的潜在影响。他们可能探讨了不同泵浦功率、光纤长度和温度等因素如何影响Raman效应的强度,以及如何通过优化系统参数来最小化这种频率漂移。此外,文章还可能包括了对现有理论模型的验证或改进,以及针对实际应用可能提出的一些解决方案和建议,例如使用新型材料或结构设计来减缓频率漂移。 该研究发表于《高功率激光科学与工程》(HighPower Laser Science and Engineering)2018年第六卷,第28篇文章,共7页。文章强调了开放获取许可,允许在遵循Creative Commons Attribution 4.0 许可协议下无限制地使用、分发和复制,只要原文得到恰当引用。通过这篇研究,读者可以了解到关于高功率拉曼光纤激光系统的关键技术挑战和解决策略,对于从事光纤激光技术、光通信和光学工程领域的研究人员具有重要参考价值。

Heatwaves impose serious impacts on ecosystems, human health, agriculture, and energy consumption. Previous studies have classified heatwaves into independent daytime, independent nighttime, and compound daytime-nighttime types, and examined the long-term changes in the three types. However, the underlying mechanisms associated with the variations in different heatwave types remain poorly understood. Here we present the first investigation of the local physical processes associated with the daytime, nighttime, and compound heatwaves over the global land during 1979–2020. The results show that three heatwave types occur frequently and increasingly in most regions worldwide. Nighttime and compound heatwaves exhibit stronger increases in both frequency (the yearly number of the events) and fraction (the ratio of the yearly number of one heatwave type to the total yearly number of all types) than daytime heatwaves. Composite diagnostic analyses of local meteorological variables suggest that daytime heatwaves are associated with increased solar radiation under dry conditions and reduced cloud cover and humidity under a clear sky. In contrast, nighttime heatwaves are typically accompanied by moist conditions with increases in cloud fraction, humidity, and longwave radiation at night. These synoptic conditions for daytime and nighttime heatwaves are combined to contribute to compound heatwaves. Local divergences and moisture fluxes responsible for different heatwaves are further revealed. Positive moisture divergence anomalies are seen in most land areas for daytime and compound heatwaves, while they mainly appear in low latitudes for nighttime heatwaves. Our research provides a comprehensive understanding of the local mechanisms of different heatwave types, informing future risks and impact assessments.分析语言特征

2023-06-08 上传