模拟退火算法优化最优控制问题:全局收敛性研究

需积分: 10 7 下载量 104 浏览量 更新于2024-10-27 收藏 227KB PDF 举报
本文主要探讨了"基于模拟退火算法的最优控制问题全局优化"这一主题,针对参数化最优控制问题的特性,这类问题通常表现为高维度、非光滑且非线性,这使得传统的非线性规划算法在求解过程中存在诸多挑战,如收敛性差和容易陷入局部最优解。为了克服这些问题,研究者们提出了一种创新的方法。 首先,文中采用了多重参数化策略,将复杂的最优控制问题分解为多个易于处理的子问题,从而降低了解决的难度。这种参数化技术有助于改善问题的结构,使其更适合于优化算法的应用。 其次,非可微精确罚函数方法被引入来处理约束条件,这是一种有效的处理非线性约束的方法,它能够在不改变原问题本质的前提下,将约束转化为连续函数,使得优化算法可以更有效地搜索可行解区域。 最关键的是,作者引入了模拟退火算法,这是一种启发式全局优化算法,其灵感来源于固体冷却过程中的相变现象。模拟退火算法具有良好的全局收敛性,即使在解决复杂问题时也能避免陷入局部最优,提高了优化问题的整体性能。通过对比模拟退火算法与遗传算法和序列二次规划等经典优化算法的结果,结果显示模拟退火算法在求解时间最优和燃料最优控制问题上表现出可靠且优越的性能。 本文的贡献在于提供了一种结合多重参数化、非可微精确罚函数和模拟退火算法的有效策略,用于全球优化最优控制问题,显著提升了此类问题的求解效率和全局收敛性。这对于实际工程中的复杂系统控制,如航天器轨迹优化、工业过程控制等领域具有重要的理论和实践价值。未来的研究可能进一步探索模拟退火算法与其他优化算法的混合应用,以提升优化效果和适用性。