五一赛B题:快递需求分析——模型与方法综述

版权申诉
5星 · 超过95%的资源 14 下载量 35 浏览量 更新于2024-06-26 53 收藏 1.63MB PDF 举报
本文主要探讨了2023年五一数学建模竞赛中的快递需求分析问题,该问题涉及到了多个关键技术和模型的应用。首先,作者使用Matlab和Python编程语言,针对快递行业的运输需求进行了深入研究。 在问题一中,数据处理是关键步骤,通过对数据进行同趋势化处理,以便于应用熵权-TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)模型。这种方法利用熵权分配权重,计算出最优和最劣矩阵向量,通过评价对象与正理想解和负理想解的距离(D+和D-),结合距离值计算综合度得分C值。通过对得分进行排序,得出对于快递需求的优先级分析。 问题二涉及时间序列预测,采用了ARIMA(Autoregressive Integrated Moving Average)模型。作者通过观察差分前后数据的对比,判断数据的平稳性,并进行偏(自相关)分析来确定模型的p和q值。通过模型检验表和残差的ACF/PACF图进行分析,最终确定模型公式并进行综合分析,从而预测未来的快递需求趋势。 问题三是与问题二类似的预测问题,同样依赖时间序列预测模型来预测特定城市的快递数量,根据模型结果判断发货能力。 问题四中,Dijkstra算法的应用是为了寻找成本最低的运输方案,通过遍历附件中的运输任务,确定每个任务的最优路径,这对于优化快递配送路线至关重要。 问题五则侧重于固定需求的估计和建模,通过统计方法估计城市对之间的固定需求,对各季度的需求进行汇总并进行模型拟合,使用交叉验证确保模型的准确性。 整个研究过程包含了模型假设的设定、指标的定义与说明,以及模型的建立、求解、评价和改进。文章详尽地展示了如何通过数学建模技术解决实际的快递需求分析问题,并提供了丰富的数据分析和模型构建细节,对于理解和应用这些技术具有很高的参考价值。