Matlab实现单变量线性回归:梯度下降求最优参数
70 浏览量
更新于2024-08-27
1
收藏 1001KB PDF 举报
本文主要介绍了如何在Matlab中实现单变量线性回归算法,以应用于OCR(光学字符识别)场景下的计算机视觉任务。线性回归是一种基础但强大的机器学习方法,用于预测一个连续变量(如盈利)与一个或多个输入变量(如城市人口)之间的关系。以下是文章的关键知识点:
1. **数据分布**:
- 数据集包含城市人口(x轴)作为特征变量,盈利(y轴)作为目标变量,用于拟合线性关系。
2. **线性函数和模型**:
- 假设函数(Hypothesis)采用形式 `h_theta(x) = theta_0 + theta_1 * x`,其中`theta_0` 和 `theta_1` 是待优化的参数。
- 目的是找到最优的参数值,使得预测的盈利(`h_theta(x)`)尽可能接近实际的盈利值(`y`)。
3. **算法核心步骤**:
- **设置假设函数**:确定线性函数的形式,以便进行预测。
- **选择损失函数**:通常选择均方误差(Mean Squared Error, MSE),衡量预测值与真实值的差距。
- **梯度下降法**:
- 求解损失函数J关于参数的最小值,通过求导数(高数知识)找到局部最优解。
- 在Matlab中,通过循环迭代更新参数`theta_0`和`theta_1`,每次更新时减小学习率`alpha`乘以当前梯度(`alpha * gradient`)。
4. **Matlab实现**:
- 使用`load`函数加载数据,将特征`X`扩展一列(添加常数项`ones(m,1)`),形成设计矩阵。
- 初始化参数`theta`为全零向量。
- 设置迭代次数(`num_iters`)、学习率(`alpha`)等超参数。
- 实现`gradientDescent`函数,包含梯度计算、参数更新和绘图展示训练数据和拟合线性回归结果的过程。
通过这个例子,读者可以了解到如何使用Matlab实现线性回归算法,包括数据预处理、模型定义、优化算法以及结果可视化。这对于理解机器学习的基本流程和编程实践具有重要意义。
648 浏览量
690 浏览量
125 浏览量
116 浏览量
基于贝叶斯线性回归算法的多变量时间序列预测:Matlab代码实现(推荐使用2018B版本及以上),基于贝叶斯线性回归的MATLAB代码实现:多变量时间序列预测的高效策略,基于贝叶斯线性回归(Bayes
2025-02-14 上传
134 浏览量
1283 浏览量
331 浏览量

weixin_38608025
- 粉丝: 6
最新资源
- 解决Unity3D中mono.data.sqlite.dll加载失败的问题
- 官方一键卸载工具,彻底清除MS Office 2003至2016
- 实现HTML5移动APP飞入购物车动画效果教程
- JavaScript中压缩包子文件技术的探讨
- 墙体开洞技术及其设备装置的应用分析
- 二维码编码解码源码及测试程序分享
- UFIDA NC5.6数据字典详细查询手册
- 探索glibc-linuxthreads-2.1.3.tar.gz的安装与应用
- 易语言图表模块与24位色转单色位图技术解析
- 51单片机控制LED流星雨灯DIY制作教程
- STM32F103三串口通信技术实现与优化
- 建筑复合管道制作技术的创新方法研究
- iOS ShareSDK封装技巧与代码示例
- 掌握Delphi XE5 Android移动开发:从安装到调试
- 使用Matplotlib进行数据可视化的Jupyter Notebook作业
- glibc-linuxthreads-2.1.1压缩包解析与使用指南