从感官数据中学习:机器学习与量化自我

需积分: 0 1 下载量 56 浏览量 更新于2024-07-18 收藏 13.46MB PDF 举报
"Machine Learning for the Quantified Self: On the Art of Learning from Sensory Data" 本文主要探讨了在“量化自我”领域中应用机器学习的方法,尤其是如何从感官数据中学习并提取有价值的信息。随着传感器技术的普及,我们周围的设备,如智能手机和智能手表,能够收集大量的个人数据。这些数据通常具有噪声、中断和高维度的特点,为数据科学带来了挑战。机器学习作为一种有效的工具,可以帮助处理这些数据,从中挖掘出有意义的总结和预测。 "量化自我"(Quantified Self)运动是近年来兴起的一种趋势,人们通过各种可穿戴设备和应用程序来记录和分析自己的生活习惯、健康状况和行为模式。然而,这些设备产生的数据量大、质量参差不齐,需要有效的数据处理和分析技术来处理。机器学习是解决这一问题的关键,它能够自动从大量复杂数据中发现模式、趋势和关联,进而生成有用的信息。 在机器学习的框架下,有多种方法可以应用于量化自我的数据处理。例如,预处理技术可以用于清洗和整合数据,减少噪声和不一致性;特征选择和降维技术可以帮助我们从高维度数据中找出关键特征,降低计算复杂性;而监督学习、无监督学习以及强化学习等算法则可以用于构建预测模型,以预测个人的行为、健康状态或反应。 对于传感器数据的学习,时间序列分析尤为重要,因为许多生理信号和行为模式都具有时间依赖性。机器学习模型,如循环神经网络(RNN)和长短时记忆网络(LSTM),特别适合处理这类数据。此外,深度学习,特别是卷积神经网络(CNN)在图像和声音数据的分析中表现出色,这些数据在传感器数据中也占据了一席之地。 除了技术层面,隐私和伦理问题也是量化自我中机器学习应用需要考虑的重要方面。如何确保个人数据的安全、保护用户隐私,同时确保数据分析的透明度和公平性,是当前研究和实践中的重要议题。 "Machine Learning for the Quantified Self"探讨了将机器学习应用于个人数据的挑战和机遇,强调了在理解和利用这些数据时的艺术和科学。通过有效利用机器学习,我们可以从日常生活的海量数据中获取有价值的信息,提高生活质量,同时也推动了认知系统、人机交互和智能设备的发展。

Unlike the classical encryption schemes,keys are dispensable in certain PLS technigues, known as the keyless secure strat egy. Sophisticated signal processing techniques such as arti- ficial noise, beamforming,and diversitycan be developed to ensure the secrecy of the MC networks.In the Alice-Bob-Eve model, Alice is the legitimate transmitter, whose intended target is the legitimate receiver Bob,while Eve is the eavesdropper that intercepts the information from Alice to Bob.The secrecy performance is quantified via information leakagei.ethe dif ference of the mutual information between the Alice-Bob and Alice-Eve links. The upper bound of the information leakage is called secrecy capacity realized by a specific distribution of the input symbols, namely,capacity-achieving distribution.The secrecy performance of the diffusion-based MC system with concentration shift keying(CSK)is analyzed from an informa- tion-theoretical point of view,providing two paramount secrecy metrics, i.e., secrecy capacity and secure distance[13].How ever, only the estimation of lower bound secrecy capacity is derived as both links attain their channel capacity.The secrecy capacity highly depends on the system parameters such as the average signal energy,diffusion coefficientand reception duration. Moreover, the distance between the transmitter and the eavesdropper is also an important aspect of secrecy per- formance. For both amplitude and energy detection schemes secure distance is proposed as a secret metricover which the eavesdropper is incapable of signal recovery. Despite the case with CSK,the results of the secure metrics vary with the modulation type(e.g.pulse position,spacetype) and reception mechanism(e.g.passive,partially absorbingper fectly absorbing).For ease of understanding,Figure 3 depicts the modulation types and the corresponding CIRs with different reception mechanisms. Novel signa processing techniques and the biochemical channel properties can further assist the secrecy enhancement in the MC system.The molecular beam forming that avoids information disclosure can be realized via the flow generated in the channel.Besidesnew dimensions of diversity, such as the aforementioned molecular diversity of ionic compounds, can beexploited. Note that the feasibility of these methods can be validated by the derived secrecy metrics.

2023-06-13 上传