时变时滞混沌神经网络采样同步新方法:基于LMI的优化控制
需积分: 11 14 浏览量
更新于2024-08-08
收藏 1.24MB PDF 举报
本文主要探讨了时变时滞混沌神经网络的采样同步问题,这是一个在信息技术领域中的关键研究课题,尤其是在实时性和效率方面具有重要意义。混沌神经网络因其复杂的行为和自组织特性,在信号处理、控制系统设计以及模式识别等领域具有广泛应用。采样同步是确保这些网络在实际应用中能够准确、高效地进行数据传输和处理的关键步骤。
作者们利用Lyapunov稳定性理论作为基础,这是一种广泛应用于非线性系统稳定性分析的数学工具,它通过构造Lyapunov泛函来评估系统的稳定性。在面对时变时滞这一复杂情况时,他们提出了一种新的方法,即结合输入延迟策略,构建了一个更为精确和保守性较小的同步准则。这个准则以线性矩阵不等式(LMIs)的形式呈现,这在优化控制理论中是一种有效的数学工具,因为它可以将复杂的不等式约束转化为易于处理的矩阵形式。
通过MATLAB软件,研究人员成功地求解了这些线性矩阵不等式,从而设计出合理的采样控制器。这种控制器能够在保持混沌神经网络稳定性的前提下,使得网络在相对较大的采样间隔下实现同步,这对于提高系统的实时性和降低硬件需求具有显著优势。这意味着即使在通信速率有限或硬件资源受限的情况下,时变时滞混沌神经网络也能保持有效的工作状态。
数值仿真实验是验证这种方法的有效性和优越性的关键环节。通过模拟和比较不同条件下的同步效果,研究人员证明了他们的新方法在实际应用中的可行性。这些结果对于改进混沌神经网络的性能,特别是在工业自动化、机器人控制或者物联网等领域有着重要的实践价值。
本论文的研究成果不仅深化了我们对时变时滞混沌神经网络采样同步的理解,也为实际工程中的神经网络设计提供了强有力的技术支持,有助于推动混沌控制技术的发展,并可能在未来的技术革新中发挥重要作用。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2021-09-27 上传
2021-04-28 上传
2021-03-03 上传
2021-03-03 上传
2021-03-28 上传
2021-09-26 上传
weixin_38547421
- 粉丝: 3
- 资源: 958
最新资源
- 群山环绕的蓝色风景PPT模板下载
- dim-spa核心组件:JavaScript实现滚动条
- mviewExtract:解压缩marmoset.mview文件至Marmoset Viewer
- Fortran 2018与SQLite 3接口绑定技术实现
- 迷你绘图仪制作指南:Arduino UNO驱动电路方案
- 构建AWS无服务器照片库:AWSPics实现细节与优势
- Rempl-crx:Chromium开发者的远程访问与审核平台
- 广东工业大学数据挖掘课程作业及试卷解析
- Android开发资源包:实战项目与工具集
- GitHub Pages与Markdown文件的使用教程
- 甜橙音乐网在线音乐服务平台介绍
- ember-cli-markdown-compiler实现template.md转template.hbs功能
- yamlsh: 交互式命令行工具简化YAML文件编辑
- GitHub关注者查询工具:Is Following Me on Github? 插件
- Zwift Offline使用教程:单人及多用户支持
- TCMS列车控制管理系统的应用与技术资料