随机化与三元素中位数快速排序策略比较
需积分: 0 188 浏览量
更新于2024-08-05
收藏 902KB PDF 举报
"随机化快速排序的模拟与分析1"
本文深入探讨了快速排序算法的两种轴点选取策略,即随机取轴点和三元素取中位数选取轴点,并通过实验模拟研究了它们在比较次数上的期望值和方差。快速排序由Tony Hoare在1961年提出,因其高效性能而被广泛应用于如C++和Java等主流编程语言的标准库中。
在最坏情况下,传统快速排序的时间复杂度为O(n^2),但平均时间复杂度为O(n log n)。为了避免最坏情况的发生,实践中常常采用随机选取轴点的方法。这种方法假设每次都能独立且均匀地从所有元素中选择轴点,因此比较次数的期望值为2n ln n + O(n),而方差的计算相对复杂,本文通过编程模拟来获取这一数据。
另一种常见的优化策略是选择序列中三个元素的中位数作为轴点,这种方法被C++标准库采用。这种“三元素中位数划分法”旨在减少极端情况下的比较次数,提高算法效率。同样,本文也将通过模拟来分析这种方法在比较次数期望和方差上的表现。
在C++实现快速排序时,可以利用运算符重载来跟踪比较次数。例如,可以创建一个名为`Int`的结构体,其中包含一个整数值`val`和一个计数器`cmp_cnt`。通过重载小于运算符,每次比较都能自动更新计数器。
```cpp
int cmp_cnt = 0;
struct Int {
int val;
bool operator<(Int rhs) const {
++cmp_cnt;
return val < rhs.val;
}
};
```
快速排序的核心操作`partition`函数如下,它将使用定义的小于运算符进行比较并重新排列数组:
```cpp
Int* partition(Int* l, Int* r) {
Int x = *r, *i = l;
for (Int* j = l; j < r; ++j)
if (*j < x)
std::swap(*i++, *j);
std::swap(*i, *r);
return i;
}
```
通过运行大量随机生成的输入数据,模拟上述两种轴点选取策略,我们可以计算出比较次数的期望值和方差,从而对两种方法的性能进行比较。这种方法有助于理解哪种策略在实际应用中更为高效,特别是在处理大规模数据时。
588 浏览量
点击了解资源详情
109 浏览量
2023-08-24 上传
2022-04-23 上传
点击了解资源详情
点击了解资源详情
118 浏览量
125 浏览量
销号le
- 粉丝: 35
- 资源: 289
最新资源
- 酒店大堂装饰模型设计
- delivery-upptime:Math Mathieu Leplatre的正常运行时间监控器和状态页面,由@upptime提供支持
- ComputationalPhysics2019
- 神领物流 微服务项目实战-课程学习
- 非光学太阳能跟踪器(东塔2.4KW)-项目开发
- SpinConv:从旋转表示类型转换为另一种-matlab开发
- 现代简约沙发模型设计
- 临时岗位津贴申请单excel模版下载
- Calculadora
- Benchworks
- redis-lesson:我的laravel教程“带有Socket.io的实时Laravel”版本
- 圣诞节的漂亮小程序圣诞节漂亮的小程序
- trab_calc_num_ufsc:TrabalhoPrático1 deCálculoNúmerico
- 绿色田园家居模型
- 1D、2D 或 3D 中的拉普拉斯算子:具有精确特征对的矩形网格上的稀疏 (1-3)D 拉普拉斯算子。-matlab开发
- 正常运行时间:Jul Julien Jourdain的正常运行时间监控和状态页面,由@upptime提供支持