Python深度学习入门:线性回归与逻辑回归
需积分: 0 35 浏览量
更新于2024-07-17
收藏 509KB PDF 举报
"《Deep Learning in Python - Prerequisites》是一本面向初学者的机器学习入门书籍,由The Lazy Programmer编写,旨在帮助读者掌握数据科学和机器学习的基础,特别是线性回归和逻辑回归在Python中的应用。书中通过清晰的章节结构,逐步引导读者理解机器学习的核心概念和技术。\n\n首先,书中在Chapter 1介绍了什么是机器学习,阐述了机器学习的基本定义、类型以及它在现代科技中的重要性。接着,Chapter 2探讨了分类与回归这两种基本的机器学习任务,解释了它们的区别和应用场景。\n\nChapter 3深入讲解了线性回归,这是预测分析中最基础且广泛使用的模型之一。读者将学习如何构建线性模型,理解残差、误差和最小二乘法的概念,并学会在Python中实现线性回归算法。\n\nChapter 4转向线性分类,讲解如何使用线性模型进行二分类问题。这一章可能会涉及支持向量机(SVM)等技术。\n\nChapter 5介绍了逻辑回归,这是一种用于分类问题的统计方法,尤其适用于处理二分类问题。书中会讲解逻辑函数、最大似然估计和梯度下降等关键概念。\n\nChapter 6继续深入,讨论最大似然估计,这是估计模型参数的常用方法,对理解机器学习模型的训练过程至关重要。\n\nChapter 7介绍了梯度下降,这是一种优化算法,常用于训练机器学习模型,特别是神经网络。读者将学习如何使用梯度下降来最小化损失函数。\n\nChapter 8通过解决XOR问题和甜甜圈问题,展示了在实际问题中如何应用前面学过的知识,帮助读者巩固理解并提高解决问题的能力。\n\n书的结论部分强调了深度学习的重要性,指出2016年Google的AlphaGo程序在围棋比赛中战胜了世界冠军李世石,这标志着人工智能的巨大进步。作者鼓励读者相信深度学习的力量,并准备好在这个快速发展的领域中学习和探索。\n\n这本书为那些想要了解深度学习和神经网络,但缺乏机器学习基础知识的读者提供了一个理想的起点。通过学习这本书,读者将能够逐步建立起坚实的机器学习基础,为进一步研究深度学习打下坚实的基础。"
2018-04-29 上传
2018-04-07 上传
2017-10-29 上传
2017-10-29 上传
2018-01-18 上传
2018-07-30 上传
2021-04-17 上传
338 浏览量
2018-08-30 上传
weixin_38743968
- 粉丝: 404
- 资源: 2万+
最新资源
- Java集合ArrayList实现字符串管理及效果展示
- 实现2D3D相机拾取射线的关键技术
- LiveLy-公寓管理门户:创新体验与技术实现
- 易语言打造的快捷禁止程序运行小工具
- Microgateway核心:实现配置和插件的主端口转发
- 掌握Java基本操作:增删查改入门代码详解
- Apache Tomcat 7.0.109 Windows版下载指南
- Qt实现文件系统浏览器界面设计与功能开发
- ReactJS新手实验:搭建与运行教程
- 探索生成艺术:几个月创意Processing实验
- Django框架下Cisco IOx平台实战开发案例源码解析
- 在Linux环境下配置Java版VTK开发环境
- 29街网上城市公司网站系统v1.0:企业建站全面解决方案
- WordPress CMB2插件的Suggest字段类型使用教程
- TCP协议实现的Java桌面聊天客户端应用
- ANR-WatchDog: 检测Android应用无响应并报告异常