PCIe PHY逻辑升级:8GT/s带宽的关键决策

5星 · 超过95%的资源 需积分: 50 24 下载量 5 浏览量 更新于2024-07-25 2 收藏 705KB PDF 举报
本文档由PCI-SIG(Peripheral Component Interconnect Express,即PCI Express)标准组织提供的关于PCIe 3.0PHY(Physical Layer)逻辑部分的详细介绍。PHY在PCIe系统中扮演着关键角色,负责数据传输的物理层面处理,包括信号调制、解调、线路编码和解码等。PCIe 3.0相较于其前代版本2.0,目标是提供双倍的数据传输速率,从PCIe 2.0的5 GT/s提升至8 GT/s。 首先,问题陈述部分明确指出,为了实现8 GT/s的数据速率,必须兼顾高容量制造通道的需求,确保后向兼容性,即使在最坏的条件下也能使用相同的信道和长度。同时,低功耗和设计简洁性也是重要的考虑因素。为了达到这个目标,PCIe 3.0要求从PCIe 1.0的2.5 GT/s开始,通过两倍的增长,达到8 GT/s,从而为带宽提供约60%的提升。 然而,单纯提升数据速率并不能满足全部需求,因此编码技术的改进变得至关重要。传统的8b/10b编码机制在PCIe 2.0中被使用,但到了PCIe 3.0,设计者选择了一种仅包含scrambling(混淆)机制的替代方案,目的是在保持8 GT/s数据速率的同时提高编码效率。这种改变使得带宽的总体提升不仅仅是基础数据速率的翻倍,而是通过编码效率的提升实现了大约1.25倍的数据速率改善,进而带来了整体上1.6倍的带宽增长。 挑战在于如何在不牺牲性能的前提下,实现从8b/10b编码到scrambling编码的转换,这涉及到信号处理技术的优化,可能包括噪声抑制、误码率控制以及信号质量的管理。文档中提到的“编码”部分可能会深入探讨这些技术细节,例如不同的编码算法、编码器和解码器设计、以及它们如何适应高速信号传输的复杂环境。 此外,文档还可能涵盖PHY设计的关键参数,如工作频率、信号规范(如眼图)、串扰管理、电源管理以及与连接器和电缆的接口要求。所有这些内容都是为了确保PCIe 3.0 PHY能够在实际应用中实现高性能、可靠性和成本效益的平衡。 总结来说,PCI-SIG的这份资料提供了关于PCIe 3.0 PHY逻辑部分的关键信息,包括数据速率决策背后的考量、编码技术的革新、以及面临的技术挑战。这对于理解PCIe标准的演进,特别是高速数据传输的实现机制具有重要价值。
2014-09-15 上传
Traditional multi-drop, parallel bus technology is approaching its practical performance limits. It is clear that balancing system performance requires I/O bandwidth to scale with processing and application demands. There is an industry mandate to re-engineer I/O connectivity within cost constraints. PCI Express comprehends the many I/O requirements presented across the spectrum of computing and communications platforms, and rolls them into a common scalable and extensible I/O industry specification. Alongside these increasing performance demands, the enterprise server and communications markets have the need for improved reliability, security, and quality of service guarantees. This specification will therefore be applicable to multiple market segments. Technology advances in high-speed, point-to-point interconnects enable us to break away from the bandwidth limitations of multi-drop, parallel buses. The PCI Express basic physical layer consists of a differential transmit pair and a differential receive pair. Dual simplex data on these point-to-point connections is self-clocked and its bandwidth increases linearly with interconnect width and frequency. PCI Express takes an additional step of including a message space within its bus protocol that is used to implement legacy “side- band” signals. This further reduction of signal pins produces a very low pin count connection for components and adapters. The PCI Express Transaction, Data Link, and Physical Layers are optimized for chip-to-chip and board-to-board interconnect applications. An inherent limitation of today’s PCI-based platforms is the lack of support for isochronous data delivery, an attribute that is especially important to streaming media applications. To enable these emerging applications, PCI Express adds a virtual channel mechanism. In addition to use for support of isochronous traffic, the virtual channel mechanism provides an infrastructure for future extensions in supporting new applications. By adhering to the PCI Software Model, today’s applications are easily migrated even as emerging applications are enabled.