动态模糊机器学习理论与应用

需积分: 9 24 下载量 61 浏览量 更新于2024-07-19 收藏 10.18MB PDF 举报
"Dynamic Fuzzy Machine Learning-De Gruyter(2018).pdf" 本书探讨了动态模糊机器学习这一主题,旨在处理大数据、云计算、物联网和量子信息领域中的复杂数据类型——动态模糊数据(DFD)。作者的研究团队自1994年起就开始研究动态模糊数据的深层关系和数据语义不确定性,并提出了不确定数据集的各种集合、逻辑和模型系统理论。动态模糊集和动态模糊逻辑(DFL)被引入到机器学习领域,形成了动态模糊机器学习的理论框架。 第一章介绍了动态模糊机器学习模型。首先定义问题,然后引入动态模糊机器学习模型,接着回顾相关工作,阐述动态模糊机器学习系统的算法和相关过程控制模型,还介绍了动态模糊关系学习算法,并对章节进行了总结。 第二章讲述了动态模糊自主学习子空间学习算法。分析了当前自主学习的状态,提出基于DFL的自主学习子空间理论系统,以及基于DFL的自治子空间学习算法,并对本章内容进行了总结。 第三章关注模糊决策树学习。分析决策树学习的现状,研究动态模糊格决策树方法,讨论动态模糊决策树的特殊属性处理和剪枝策略,最后概述了动态模糊决策树的一些应用。 第四章讨论了基于动态模糊集的动态概念。分析动态模糊集(DFS)与概念学习的关系,介绍DF概念表示模型,构建DF概念学习空间,基于DF格的概念学习模型,以及基于动态模糊决策树的概念学习模型,并讨论了基于动态概念的应用。 本书的读者群体主要为硕士和博士研究生,内容经过多次修订,以满足不同读者的需求。书中的研究工作已发表在国际期刊和会议上,体现了动态模糊机器学习在解决数据不确定性问题上的重要性和创新性。同时,书中提到的其他书籍如《Lie Group Machine Learning》、《Cloud Computing Architecture》、《Trusted Computing》和《Chaotic Secure Communication》也反映了与机器学习相关领域的广泛研究范围。
2015-05-01 上传
李群的一本书,是扫描版,书的质量不错。 This book is intended for a one year graduate course on Lie groups and Lie algebras. The author proceeds beyond the representation theory of compact Lie groups (which is the basis of many texts)and provides a carefully chosen range of material to give the student the bigger picture. For compact Lie groups, the Peter-Weyl theorem, conjugacy of maximal tori (two proofs), Weyl character formula and more are covered. The book continues with the study of complex analytic groups, then general noncompact Lie groups, including the Coxeter presentation of the Weyl group, the Iwasawa and Bruhat decompositions, Cartan decomposition, symmetric spaces, Cayley transforms, relative root systems, Satake diagrams, extended Dynkin diagrams and a survey of the ways Lie groups may be embedded in one another. The book culminates in a "topics" section giving depth to the student's understanding of representation theory, taking the Frobenius-Schur duality between the representation theory of the symmetric group and the unitary groups as a unifying theme, with many applications in diverse areas such as random matrix theory, minors of Toeplitz matrices, symmetric algebra decompositions, Gelfand pairs, Hecke algebras, representations of finite general linear groups and the cohomology of Grassmannians and flag varieties.   Daniel Bump is Professor of Mathematics at Stanford University. His research is in automorphic forms, representation theory and number theory. He is a co-author of GNU Go, a computer program that plays the game of Go. His previous books include Automorphic Forms and Representations (Cambridge University Press 1997)and Algebraic Geometry (World Scientific 1998).