Practical Python与OpenCV 2nd Edition:图像处理与计算机视觉入门

"Practical Python and OpenCV, 2nd Edition 是一本面向初学者的、以实例驱动的方式介绍图像处理和计算机视觉的指南。作者Adrian Rosebrock博士旨在通过这本书帮助读者掌握Python编程和OpenCV库的应用。本书强调实践,适合对图像处理感兴趣的读者。"
在这本《实用Python与OpenCV(第二版)》中,作者Adrian Rosebrock首先介绍了Python语言以及在计算机视觉领域中必不可少的包和库。Python是这本书的基础,而OpenCV则是实现图像处理和计算机视觉功能的关键工具。
Python和所需的包:
1. NumPy和SciPy:这两个库是科学计算的核心,提供高效的数据操作和分析。NumPy提供了多维数组对象,SciPy则包含了用于信号处理、图像处理和优化等功能。
- Windows:在Windows上安装这两个库通常需要通过Anaconda或pip来完成。
- OSX:可以使用Homebrew或pip进行安装。
- Linux:可以使用包管理器如apt-get或yum进行安装。
2. Matplotlib:这是一个用于创建静态、动态和交互式可视化的库,对于数据可视化至关重要。
- 所有平台:安装Matplotlib的方法通常是通过pip命令。
3. OpenCV:这是一个强大的开源计算机视觉库,支持图像和视频的读取、处理和分析。
- Linux和OSX:可以通过包管理器安装,如apt-get或brew。
- Windows:可以通过预编译的二进制文件或者Anaconda来安装。
4. Mahotas:这是一套专门针对计算机视觉的Python库,提供了一些图像处理函数。
- 所有平台:安装Mahotas同样可以通过pip。
5. scikit-learn:这个库用于机器学习,虽然不是直接用于图像处理,但在特征提取和模型训练时可能用到。
- 所有平台:使用pip安装。
6. scikit-image:它提供了一整套图像处理算法,包括几何变换、色彩空间操作、噪声去除等。
- 所有平台:同样通过pip安装。
书中还提醒读者,如果没有购买此书,应该考虑支持作者,购买正版。此外,如果你已经安装了所有必要的软件,可以直接跳过安装部分开始学习。
接下来的章节,作者会深入讲解如何加载、显示和保存图像,以及图像的基本概念,如像素和坐标系统,这些都是理解图像处理的基础。书中的内容逐步深入,涵盖了图像的读取、显示、保存等基本操作,以及像素的定义和图像坐标系的工作原理,为读者构建了扎实的图像处理基础。后续章节将涉及更多的图像处理和计算机视觉技术,如图像变换、特征检测、物体识别等,帮助读者掌握实际应用中的技能。
123 浏览量
192 浏览量
193 浏览量
2019-10-04 上传
108 浏览量
2018-05-17 上传
2017-03-30 上传
188 浏览量
154 浏览量

s941015n
- 粉丝: 29
最新资源
- 初学者入门必备!Visual C++开发的连连看小程序
- C#实现SqlServer分页存储过程示例分析
- 西门子工业网络通信例程解读与实践
- JavaScript实现表格变色与选中效果指南
- MVP与Retrofit2.0相结合的登录示例教程
- MFC实现透明泡泡效果与文件操作教程
- 探索Delphi ERP框架的核心功能与应用案例
- 爱尔兰COVID-19案例数据分析与可视化
- 提升效率的三维石头制作插件
- 人脸C++识别系统实现:源码与测试包
- MishMash Hackathon:Python编程马拉松盛事
- JavaScript Switch语句练习指南:简洁注释详解
- C语言实现的通讯录管理系统设计教程
- ASP.net实现用户登录注册功能模块详解
- 吉时利2000数据读取与分析教程
- 钻石画软件:从设计到生产的高效解决方案