"迁移学习混合专家分类模型:解决高分辨遥感影像场景分类精度低下问题"
版权申诉
161 浏览量
更新于2024-03-09
收藏 2.03MB DOCX 举报
The document "Transfer Learning Mixed Expert Classification Model for High-Resolution Remote Sensing Image Scene Classification" addresses the issue of low classification accuracy in small-sample remote sensing image scene datasets due to the diversity and complexity of surface objects. The proposed Transfer Learning Mixed Expert (TLMoE) classification model leverages both global information from fully connected layer features and local detail information from convolutional layer features to achieve more accurate scene classification. The model includes a prediction channel based on fully connected layer features, which utilizes global information to preliminarily classify all scene categories. It also incorporates expert channels for training dedicated expert networks for each scene category, extracting key local information embedded in convolutional layer features to differentiate subtle differences between similar scenes and achieve fine-grained recognition. The combination of prediction weights allows for classification that takes into account both global and local scene differences. Experimental results on small-sample datasets demonstrate that the proposed method effectively recognizes confusing scenes and achieves good classification performance.
2019-06-20 上传
2021-09-20 上传
2023-07-23 上传
2023-02-23 上传
2022-06-26 上传
2023-02-23 上传
罗伯特之技术屋
- 粉丝: 4468
- 资源: 1万+
最新资源
- Angular程序高效加载与展示海量Excel数据技巧
- Argos客户端开发流程及Vue配置指南
- 基于源码的PHP Webshell审查工具介绍
- Mina任务部署Rpush教程与实践指南
- 密歇根大学主题新标签页壁纸与多功能扩展
- Golang编程入门:基础代码学习教程
- Aplysia吸引子分析MATLAB代码套件解读
- 程序性竞争问题解决实践指南
- lyra: Rust语言实现的特征提取POC功能
- Chrome扩展:NBA全明星新标签壁纸
- 探索通用Lisp用户空间文件系统clufs_0.7
- dheap: Haxe实现的高效D-ary堆算法
- 利用BladeRF实现简易VNA频率响应分析工具
- 深度解析Amazon SQS在C#中的应用实践
- 正义联盟计划管理系统:udemy-heroes-demo-09
- JavaScript语法jsonpointer替代实现介绍