ACM程序设计:动态规划与最长有序子序列解法
需积分: 9 119 浏览量
更新于2024-08-24
收藏 1.66MB PPT 举报
"本文主要介绍了ACM程序设计中的动态规划思想,通过Fibonacci数的递归实现和优化,以及最长有序子序列和最大子段和的问题来阐述动态规划的应用。"
在ACM程序设计中,动态规划是一种解决复杂问题的有效方法,它通过将问题分解成更小的子问题来求解。首先,我们来看一个简单的例子——Fibonacci数。Fibonacci数列定义为:F(n)=1 当 n=1 或 n=2,对于 n>2,F(n)等于前两个数的和,即 F(n)=F(n-1)+F(n-2)。这种定义非常适合用递归方式来实现:
```cpp
int fa(int n) {
if (n == 1 || n == 2) return 1;
else return fa(n-1) + fa(n-2);
}
```
然而,上述递归实现存在重复计算的问题,效率低下。为了解决这个问题,我们可以使用动态规划的方法,将已计算过的F(n)值存储在一个数组中,避免重复计算:
```cpp
int a[100] = {0};
int fa(int n) {
if (a[n] != 0) return a[n];
if (n == 1 || n == 2) {
a[n] = 1;
return a[n];
} else {
a[n] = fa(n-1) + fa(n-2);
return a[n];
}
}
```
接下来,我们讨论一个思考题——最长有序子序列。给定一个数组,我们需要找到最长的非降序子序列。可以通过动态规划求解,定义F[I]表示以索引I结尾的最长有序子序列的长度。通过遍历数组并更新F[I],可以得到答案。
另一个思考题是求最大子段和。给定一个包含可能为负数的整数序列,目标是找到连续子序列的最大和。即使所有元素都是负数,最大子段和也定义为0。这个问题可以通过Kadane算法解决,它也是基于动态规划的思想,通过遍历序列,记录当前子序列的和以及全局最大和。
总结来说,这两个思考题与Fibonacci数列问题都体现了动态规划的核心思想:将复杂问题分解为子问题,通过存储和复用子问题的解来提高效率。动态规划在ACM程序设计中占据重要地位,是解决许多复杂问题的关键工具。无论是寻找最长有序子序列还是计算最大子段和,通过合理地构造状态和转移方程,都能高效地解决问题。
2013-06-08 上传
2022-06-18 上传
2018-08-23 上传
2023-06-25 上传
2023-12-14 上传
2023-10-05 上传
2023-11-04 上传
2023-05-17 上传
2023-11-05 上传
三里屯一级杠精
- 粉丝: 37
- 资源: 2万+
最新资源
- node-silverpop:轻松访问Silverpop Engage API的Node.js实现
- 最小宽度网格图绘制算法研究
- 多数据源事务解决方案:统一管理单应用中的多数据库
- 利用Next.js匿名浏览Reddit子板块图片
- SpringBoot+H5官网模板,覆盖多种网页资源播放
- Gitshots-server:简化开源贡献的提交记录服务
- Scrapy-Dash工具:轻松生成Scrapy文档集
- Node.js v18.12.0发布,优化Linux PPC64LE服务器性能
- 蚂蚁设计专业版快速使用指南与环境配置
- Vue.js 2.3.4源码解读及开发环境配置指南
- LDBase:Lazarus开发者的dbf数据库管理开源工具
- 高效部署WordPress的VENISON脚本教程
- Saffron Bahraman-crx插件:控制产品线的栽培与培养
- Gitpod中运行前后端应用程序的指南
- Node.js v20.3.0新版本发布 - 开源跨平台JavaScript环境
- 掌握非线性方程根的迭代求解-Matlab方法实现