ACM程序设计:动态规划与最长有序子序列解法
需积分: 9 96 浏览量
更新于2024-08-24
收藏 1.66MB PPT 举报
"本文主要介绍了ACM程序设计中的动态规划思想,通过Fibonacci数的递归实现和优化,以及最长有序子序列和最大子段和的问题来阐述动态规划的应用。"
在ACM程序设计中,动态规划是一种解决复杂问题的有效方法,它通过将问题分解成更小的子问题来求解。首先,我们来看一个简单的例子——Fibonacci数。Fibonacci数列定义为:F(n)=1 当 n=1 或 n=2,对于 n>2,F(n)等于前两个数的和,即 F(n)=F(n-1)+F(n-2)。这种定义非常适合用递归方式来实现:
```cpp
int fa(int n) {
if (n == 1 || n == 2) return 1;
else return fa(n-1) + fa(n-2);
}
```
然而,上述递归实现存在重复计算的问题,效率低下。为了解决这个问题,我们可以使用动态规划的方法,将已计算过的F(n)值存储在一个数组中,避免重复计算:
```cpp
int a[100] = {0};
int fa(int n) {
if (a[n] != 0) return a[n];
if (n == 1 || n == 2) {
a[n] = 1;
return a[n];
} else {
a[n] = fa(n-1) + fa(n-2);
return a[n];
}
}
```
接下来,我们讨论一个思考题——最长有序子序列。给定一个数组,我们需要找到最长的非降序子序列。可以通过动态规划求解,定义F[I]表示以索引I结尾的最长有序子序列的长度。通过遍历数组并更新F[I],可以得到答案。
另一个思考题是求最大子段和。给定一个包含可能为负数的整数序列,目标是找到连续子序列的最大和。即使所有元素都是负数,最大子段和也定义为0。这个问题可以通过Kadane算法解决,它也是基于动态规划的思想,通过遍历序列,记录当前子序列的和以及全局最大和。
总结来说,这两个思考题与Fibonacci数列问题都体现了动态规划的核心思想:将复杂问题分解为子问题,通过存储和复用子问题的解来提高效率。动态规划在ACM程序设计中占据重要地位,是解决许多复杂问题的关键工具。无论是寻找最长有序子序列还是计算最大子段和,通过合理地构造状态和转移方程,都能高效地解决问题。
2013-06-08 上传
2022-06-18 上传
2013-03-12 上传
2012-02-19 上传
2022-06-18 上传
2022-06-17 上传
2022-06-18 上传
2008-11-25 上传
2011-07-23 上传
三里屯一级杠精
- 粉丝: 37
- 资源: 2万+
最新资源
- CIS110班级页面时钟设计与HTML实现
- WEB进销存管理系统wbjxc v3.0:提升企业销售与服务效率
- Ruby应用程序部署与运行指南
- Swift编程新手的FirstTry项目解析
- Laravel Events Repo:深入代码库探索PHP框架
- 深入探索Java开发的ThemeApp应用
- LitElement全局事件处理轻松搞定
- Electron + Vite + Tailwindcss 前端开发实践启动模板
- MicrosoftDocsaltspace-vr-pr:公共同步与PowerShell集成
- Okane:全新免费开源实用程序Mod,专为Fabric开发
- React 应用开发入门指南:脚本使用与构建部署
- 使用Matlab实现算术亚式期权定价及增量计算
- 经济管理学专业求职简历模板免费下载
- Parchment项目:打造个性化轻量级独奏Wiki解决方案
- Ogre3D网格动画查看工具LittleMeshViewer开源解析
- 智能DOM选择器:类似jQuery的DOM元素选择方法