Caffe框架在高分辨率遥感图像识别中的应用
需积分: 50 134 浏览量
更新于2024-08-06
收藏 856KB PDF 举报
"这篇文章主要介绍了如何使用Caffe框架进行高分辨率遥感图像的识别与分类。Caffe是一个高效、模块化的深度学习框架,由贾扬清及其团队开发,支持CPU和GPU运算,拥有Python和MATLAB接口。在实验中,作者在Linux Ubuntu 15.04系统上搭建Caffe,收集了不同类别的遥感图像,通过lmdb数据集进行处理,并计算图像均值。实验配置包括网络结构和参数设定,如最大迭代次数、学习率等。实验结果显示平均识别率为75.35%,识别率未达到最优可能是因为训练库大小、图像特征不明显以及模型参数设置的限制。未来研究将探索更好的预处理方法、扩大图像库和优化参数。"
Caffe是一个广泛应用于深度学习领域的框架,因其高效性和易用性而受到青睐。它允许用户通过修改文本文件轻松调整网络结构,支持GPU加速和多GPU并行计算,且有多种编程接口,如Python和MATLAB。在遥感图像识别与分类的应用中,Caffe首先需要将图像数据转化为lmdb格式,以便快速访问和处理。接着,计算图像的均值以辅助后续处理。网络结构和参数配置是关键步骤,包括设置最大迭代次数、学习率等超参数,以控制模型的训练过程。
在实验阶段,作者使用了Linux环境下的Caffe,收集了大量高分辨率遥感图像,分为多个类别,并进行训练和测试。实验结果表明,Caffe能有效地用于高分辨率遥感图像的识别,但识别率受到训练数据量、图像特征及模型参数设置的影响。为提高识别效果,未来的研究方向包括寻找更适合的预处理技术、增加图像库的多样性和探索更有效的参数设定策略。这将有助于进一步提升模型的识别准确性和泛化能力,扩大深度学习在遥感图像处理中的应用范围。
153 浏览量
187 浏览量
416 浏览量
662 浏览量
199 浏览量
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情

Big黄勇
- 粉丝: 69

最新资源
- 2020保险业NPS白皮书深度分析报告
- 企业版C# USB蓝牙编程实践与多驱动支持
- 康盛UCHOME图片批量上传的Flash插件
- VB.NET 2008实现Socket通信以支持DDE迁移案例
- NB-IoT QNavigator测试工具的便捷使用指南
- HP-UXadminII培训笔记完整教程
- React投资组合展示:个人项目与联系方式概览
- 使用资源与样式创新Silverlight 4导航应用
- AutoCAD内存补丁:去除或添加教育版打印戳记工具
- Canon IP 2780打印机废墨计数器清零教程
- Halcon与C#实现的高效三维重构技术
- PDF解析工具:轻松查看和处理PDF文件
- bsvm支持向量机:文本分类的有效工具
- 实现剪贴板图像复制到画布的JavaScript技巧
- 深入解析Gallery3D源码实现的高效界面切换机制
- 掌握高级JDBC连接数据库的技巧