一种基于幅度和相位迭代重建的四维合成孔径雷达成像方法
任笑真
*①
杨汝良
②
①
(河南工业大学信息科学与工程学院 郑州 450001)
②
(中国科学院电子学研究所 北京 100190)
摘 要: 4维合成孔径雷达获取的观测数据在基线-时间平面非均匀分布。若采用传统成像方法来获取目标散射体
的高度-速率维像,则因强副瓣存在,成像效果不理想。当信号具有稀疏性时,压缩感知技术能够利用少量的信号
投影值就可实现信号的准确或近似重构。然而标准的压缩感知成像方法是针对实数据进行处理,4维合成孔径雷
达成像处理的数据为复数据。因此该文提出了一种基于幅度和相位迭代重建的4维合成孔径雷达成像方法。将4维
合成孔径雷达高度-速率成像问题转化为目标复散射系数的幅度和相位联合重建问题,通过在成像过程中引入相位
信息来改善成像质量。仿真结果验证了该算法的有效性。
关键词:合成孔径雷达;4维;复数成像;压缩感知
中图分类号:TN958 文献标识码:A 文章编号:2095-283X(2016)01-0065-07
DOI: 10.12000/JR15135
引用格式:任笑真, 杨汝良. 一种基于幅度和相位迭代重建的四维合成孔径雷达成像方法[J]. 雷达学报, 2016, 5(1):
65–71. DOI: 10.12000/JR15135.
Reference format: Ren Xiaozhen and Yang Ruliang. Four-dimensional SAR imaging algorithm based on
iterative reconstruction of magnitude and phase[J]. Journal of Radars, 2016, 5(1): 65–71. DOI:
10.12000/JR15135.
Four-dimensional SAR Imaging Algorithm Based on Iterative
Reconstruction of Magnitude and Phase
Ren Xiaozhen
①
Yang Ruliang
②
①
(College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China)
②
(The Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
Abstract: Observation data obtained from the Four-Dimensional (4D) Synthetic Aperture Radar (SAR) system
is sparse and non-uniform in the baseline-time plane. Hence, the imaging results acquired by traditional
Fourier-based methods are limited by high side lobes. Compressive Sensing (CS) is a recently proposed
technique that allows for the recovery of an unknown sparse signal with overwhelming probability from very
limited samples. However, the standard CS framework has been developed for real-valued signals, and the
imaging process for 4D synthetic aperture radar deals with complex-valued data. In this study, we propose a
new 4D synthetic aperture radar imaging algorithm based on an iterative reconstruction of magnitude and
phase, which transforms the height-velocity imaging problem of 4D synthetic aperture radar into a joint
reconstruction problem of the magnitude and phase of the complex-valued scatter coefficient. Using the phase
information in the algorithm, the image quality is improved. Simulation results confirm the effectiveness of the
proposed method.
Key words: Synthetic Aperture Radar (SAR); Four-Dimensional (4D); Complex-valued imaging; Compressive
Sensing (CS)
第5卷第1期 雷 达 学 报 Vol. 5No. 1
2016年2月 Journal of Radars Feb. 2016
收稿日期:2015-12-31;改回日期:2016-01-24;网络出版:2016-02-03
*通信作者: 任笑真 rxz235@163.com
基金项目:国家自然科学基金(61201390),河南省教育厅科学技术研究重点项目(16A510004)和河南省高等学校青年骨干教师
(2015GGJS038)
Foundation Items: The National Natural Science Foundation of China (61201390), The Key Scientific Research Project in
Universities of Henan Province (16A510004), The Plan for Young Backbone Teacher of Henan Province (2015GGJS038)