14
ADS1260-Q1
,
ADS1261-Q1
ZHCSJC0 –JANUARY 2019
www.ti.com.cn
版权 © 2019, Texas Instruments Incorporated
8 Parameter Measurement Information
8.1 Noise Performance
The ADS126x-Q1 noise performance depends on the ADC configuration: data rate, PGA gain, digital filter
configuration, and chop mode. The combination of the parameters affect noise performance. Two significant
factors affecting noise performance are data rate and PGA gain. Since the profile of noise is predominantly white
(flat vs frequency), decreasing the data rate proportionally decreases bandwidth and therefore, total noise. Since
the noise of the PGA is lower than that of the modulator of the ADC, increasing the gain reduces noise when
treated as an input-referred quantity. Noise performance also depends on the digital filter and chop mode. As the
order of the digital filter increases, the noise bandwidth correspondingly decreases resulting in lower noise.
Further, as a result of two-point data averaging in chop mode, noise performance improves by √2 compared to
normal operation.
表 1 shows noise performance in units of μV
RMS
(RMS = root mean square) under the conditions listed. The
values in parenthesis are peak-to-peak values. 表 2 shows the noise performance in effective resolution (bits)
under the specified conditions. The values shown in parenthesis are the noise-free resolution. Noise-free
resolution is the resolution of the ADC with no code flicker. The noise-free resolution data are calculated based
on the peak-to-peak noise measurements.
The effective resolution data listed in the tables are calculated using 公式 1:
Effective Resolution or Noise-Free Resolution = ln (FSR / e
n
) / ln (2)
where
• FSR = full scale range = 2 · V
REF
/ Gain (See Recommended Operating Conditions for FSR)
• e
n
= Input referred voltage noise (RMS value to calculate effective resolution, p-p value to calculate noise-free
resolution) (1)
The data shown in the noise performance table represent typical ADC performance at T
A
= 25°C. The noise-
performance data are the standard deviation and peak-to-peak computations of the ADC data. The noise data
are acquired with inputs shorted, based on consecutive ADC readings for a period of ten seconds or 8192 data
points, whichever occurs first. Because of the statistical nature of noise, repeated noise measurements may yield
higher or lower noise performance results.
As a result of the increased full-scale input range provided by 5-V reference operation, effective resolution and
noise-free resolution performance are typically optimized using a 5-V reference. The effective resolution and
noise-free resolution performance data shown in 表 2 are with external 5-V reference operation.
表表 1. Noise in µV
RMS
(µV
PP
) at T
A
= 25°C and Internal 2.5-V Reference
DATA
RATE
(SPS)
FILTER
GAIN
1 2 4 8 16 32 64 128
2.5 FIR 0.18 (0.6) 0.078 (0.28) 0.046 (0.16) 0.025 (0.096) 0.014 (0.053) 0.012 (0.045) 0.01 (0.042) 0.01 (0.04)
2.5 Sinc1 0.15 (0.47) 0.071 (0.28) 0.038 (0.14) 0.019 (0.075) 0.012 (0.051) 0.01 (0.039) 0.009 (0.037) 0.009 (0.037)
2.5 Sinc2 0.14 (0.38) 0.065 (0.23) 0.032 (0.096) 0.018 (0.059) 0.011 (0.037) 0.007 (0.028) 0.007 (0.028) 0.008 (0.033)
2.5 Sinc3 0.12 (0.38) 0.062 (0.17) 0.028 (0.064) 0.016 (0.053) 0.01 (0.035) 0.008 (0.027) 0.007 (0.026) 0.006 (0.023)
2.5 Sinc4 0.1 (0.26) 0.059 (0.17) 0.032 (0.085) 0.016 (0.059) 0.010 (0.035) 0.008 (0.027) 0.006 (0.025) 0.006 (0.024)
5 FIR 0.22 (0.89) 0.11 (0.4) 0.058 (0.24) 0.032 (0.13) 0.021 (0.085) 0.016 (0.065) 0.014 (0.061) 0.015 (0.066)
5 Sinc1 0.18 (0.6) 0.093 (0.36) 0.047 (0.17) 0.025 (0.11) 0.017 (0.069) 0.014 (0.061) 0.012 (0.054) 0.014 (0.063)
5 Sinc2 0.16 (0.64) 0.084 (0.32) 0.043 (0.16) 0.023 (0.085) 0.015 (0.064) 0.011 (0.047) 0.010(0.046) 0.011 (0.049)
5 Sinc3 0.13 (0.51) 0.088 (0.32) 0.036 (0.15) 0.024 (0.091) 0.014 (0.053) 0.01 (0.043) 0.009 (0.045) 0.009 (0.042)
5 Sinc4 0.13 (0.51) 0.077 (0.28) 0.034 (0.12) 0.021 (0.075) 0.013 (0.053) 0.010 (0.044) 0.008 (0.038) 0.009 (0.038)
10 FIR 0.27 (1.4) 0.14 (0.72) 0.076 (0.4) 0.042 (0.21) 0.029 (0.15) 0.023 (0.12) 0.023 (0.11) 0.022 (0.11)
10 Sinc1 0.23 (1.1) 0.13 (0.57) 0.064 (0.3) 0.036 (0.19) 0.024 (0.13) 0.02 (0.1) 0.018 (0.083) 0.018 (0.089)
10 Sinc2 0.2 (0.89) 0.11 (0.51) 0.054 (0.24) 0.03 (0.14) 0.019 (0.093) 0.015 (0.075) 0.015 (0.079) 0.016 (0.077)
10 Sinc3 0.18 (0.81) 0.097 (0.38) 0.05 (0.22) 0.028 (0.14) 0.019 (0.088) 0.015 (0.063) 0.013 (0.067) 0.013 (0.065)
10 Sinc4 0.17 (0.68) 0.099 (0.45) 0.049 (0.24) 0.024 (0.12) 0.018 (0.085) 0.013 (0.063) 0.012 (0.061) 0.012 (0.062)
16.6 Sinc1 0.3 (1.4) 0.16 (0.81) 0.082 (0.43) 0.048 (0.25) 0.031 (0.17) 0.025 (0.15) 0.024 (0.12) 0.024 (0.14)