利用Docker构建可扩展的数据科学基础设施:Jupyter Notebook服务器指南

5星 · 超过95%的资源 需积分: 9 39 下载量 3 浏览量 更新于2024-07-19 收藏 6.96MB PDF 举报
《Docker for Data Science》是一本由Joshua Cook所著的专业书籍,专为数据科学领域提供深入指南。该书的核心主题是围绕Jupyter Notebook Server构建可扩展且灵活的数据基础设施,利用Docker这一容器化技术来优化数据科学工作流程。Docker在数据科学中的应用使得开发人员能够轻松地打包和分发应用程序及其依赖项,确保在不同环境(如本地开发环境、服务器集群或云端)中的一致性。 作者强调了Docker如何简化部署和管理复杂的数据科学工具链,包括Python、R、Apache Spark等,以及相关的数据处理库如NumPy、Pandas和TensorFlow。书中不仅介绍了Docker的基本概念,如Dockerfile的编写、镜像的创建和管理,还涵盖了如何使用Docker Compose进行多容器服务的部署,以及如何利用Docker Swarm进行更大型的集群管理。 对于Jupyter Notebook Server,读者可以了解到如何将它与Docker结合,创建私有和安全的环境,同时保持代码的版本控制和分享。通过这种方式,团队成员可以在保持数据和环境隔离的同时,共享和协作分析项目,提高生产力。 此外,本书还讨论了如何利用Docker进行数据科学项目的持续集成/持续部署(CI/CD),确保从数据处理到模型训练的整个流程自动化。在云计算时代,它还探讨了如何在AWS、Google Cloud或Azure等云平台上无缝部署Docker容器,以实现成本效益和弹性。 版权方面,所有权利归Joshua Cook所有,包括翻译、复制、再版、广播、电子改编、计算机软件使用等,以现有或未来技术执行。书中可能包含商标名称、图标和图像,但使用时应遵循相关版权和商标规定。 《Docker for Data Science》是一本实用的教程,适合数据科学家、机器学习工程师和数据工程师,帮助他们理解和利用Docker技术优化数据科学项目,并在日益复杂的IT环境中提升工作效率。
2018-07-29 上传
Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller. It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable. As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies―Python, Jupyter, Postgres―as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenes and Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms. What You'll Learn Master interactive development using the Jupyter platform Run and build Docker containers from scratch and from publicly available open-source images Write infrastructure as code using the docker-compose tool and its docker-compose.yml file type Deploy a multi-service data science application across a cloud-based system Who This Book Is For Data scientists, machine learning engineers, artificial intelligence researchers, Kagglers, and software developers