The Scientist and Engineer's Guide to Digital Signal Processing12
intensity, sound pressure, or an infinite number of other parameters. Since we
don't know what it represents in this particular case, we will give it the generic
label: amplitude. This parameter is also called several other names: the y-
axis, the dependent variable, the range, and the ordinate.
The horizontal axis represents the other parameter of the signal, going by
such names as: the x-axis, the independent variable, the domain, and the
abscissa. Time is the most common parameter to appear on the horizontal axis
of acquired signals; however, other parameters are used in specific applications.
For example, a geophysicist might acquire measurements of rock density at
equally spaced distances along the surface of the earth. To keep things
general, we will simply label the horizontal axis: sample number. If this
were a continuous signal, another label would have to be used, such as: time,
distance, x, etc.
The two parameters that form a signal are generally not interchangeable. The
parameter on the y-axis (the dependent variable) is said to be a function of the
parameter on the x-axis (the independent variable). In other words, the
independent variable describes how or when each sample is taken, while the
dependent variable is the actual measurement. Given a specific value on the
x-axis, we can always find the corresponding value on the y-axis, but usually
not the other way around.
Pay particular attention to the word: domain, a very widely used term in DSP.
For instance, a signal that uses time as the independent variable (i.e., the
parameter on the horizontal axis), is said to be in the time domain. Another
common signal in DSP uses frequency as the independent variable, resulting in
the term, frequency domain. Likewise, signals that use distance as the
independent parameter are said to be in the spatial domain (distance is a
measure of space). The type of parameter on the horizontal axis is the domain
of the signal; it's that simple. What if the x-axis is labeled with something
very generic, such as sample number? Authors commonly refer to these signals
as being in the time domain. This is because sampling at equal intervals of
time is the most common way of obtaining signals, and they don't have anything
more specific to call it.
Although the signals in Fig. 2-1 are discrete, they are displayed in this figure
as continuous lines. This is because there are too many samples to be
distinguishable if they were displayed as individual markers. In graphs that
portray shorter signals, say less than 100 samples, the individual markers are
usually shown. Continuous lines may or may not be drawn to connect the
markers, depending on how the author wants you to view the data. For
instance, a continuous line could imply what is happening between samples, or
simply be an aid to help the reader's eye follow a trend in noisy data. The
point is, examine the labeling of the horizontal axis to find if you are working
with a discrete or continuous signal. Don't rely on an illustrator's ability to
draw dots.
The variable, N, is widely used in DSP to represent the total number of
samples in a signal. For example, for the signals in Fig. 2-1. ToN '512