统计强化学习:现代视角与算法详解

需积分: 9 19 下载量 176 浏览量 更新于2024-07-18 收藏 7.22MB PDF 举报
《统计强化学习》是一本由Masashi Sugiyama教授撰写的重要著作,它以现代视角探讨了强化学习算法的广泛范围。该书的核心在于强调统计学习参数估计在强化学习中的应用,将不同的学习方法贯穿于各种环境下的学习场景之中。作者将算法分为两大类:模型自由(model-free)方法和模型基础(model-based)方法。 模型自由的方法不直接建模环境的动态过程,而是依赖于大量的交互数据来学习和优化策略。它们通常包括基于值函数的策略迭代算法,如Q-learning或SARSA,这些算法通过估算状态动作价值函数来指导决策制定。这类方法的优势在于能够处理复杂环境且对环境假设的需求较低,但可能需要大量的经验来收敛到最优解。 另一方面,模型基础的方法则尝试构建环境的描述性过程模型,如马尔科夫决策过程(MDP),以便更精确地预测状态转移和奖励。这种方法的优点是能够利用模型进行规划,从而可能达到更高的效率,但模型的准确性和复杂性通常是其挑战所在。模型基础方法中常见的策略搜索算法可能涉及直接调整策略参数,如策略梯度方法,它们通过迭代优化来改进策略。 书中不仅关注理论层面,还鼓励包含具体实例、应用案例和实用方法,反映出系列出版物对机器学习和模式识别领域最新进展的聚焦。《统计强化学习》作为Chapman & Hall/CRC出版社的Machine Learning & Pattern Recognition Series的一部分,旨在促进学术交流和实际问题解决,同时也体现了系列出版物对跨学科领域的包容,如自然语言处理、计算机视觉、游戏AI等。 《统计强化学习》是一本深入浅出的教材,对于那些希望理解强化学习基本原理、掌握统计方法在其中的应用以及探索如何结合模型和数据驱动策略的学生和研究者来说,具有很高的参考价值。无论是理论研究还是实践开发,这本书都能提供丰富的资源和指导。
2017-11-22 上传
Statistical Reinforcement Learning: Modern Machine Learning Approaches Masashi Sugiyama Taylor & Francis, 16 Mar 2015 - Business & Economics - 206 pages Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for decision making in unknown environments with large amounts of data. Supplying an up-to-date and accessible introduction to the field, Statistical Reinforcement Learning: Modern Machine Learning Approaches presents fundamental concepts and practical algorithms of statistical reinforcement learning from the modern machine learning viewpoint. It covers various types of RL approaches, including model-based and model-free approaches, policy iteration, and policy search methods. Covers the range of reinforcement learning algorithms from a modern perspective Lays out the associated optimization problems for each reinforcement learning scenario covered Provides thought-provoking statistical treatment of reinforcement learning algorithms The book covers approaches recently introduced in the data mining and machine learning fields to provide a systematic bridge between RL and data mining/machine learning researchers. It presents state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. Numerous illustrative examples are included to help readers understand the intuition and usefulness of reinforcement learning techniques. This book is an ideal resource for graduate-level students in computer science and applied statistics programs, as well as researchers and engineers in related fields.