KTP OPO with signal wave at 1630 nm
intracavity pumped by an efficient σ-polarized
Nd,MgO:LiNbO
3
laser
Hongwei Chu,
1
Jia Zhao,
1
Tao Li,
1
Shengzhi Zhao,
1*
Kejian Yang,
1
Dechun Li,
1
Guiqiu Li,
1
Wenchao Qiao,
1
Yuanhua Sang,
2
and Hong Liu
2
1
School of Information Science and Engineering, Shandong University, Jinan 250100, China
2
Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
*
shengzhi_zhao@sdu.edu.cn
Abstract: An efficient, 808-nm-laser-diode end-pumped, σ-polarized
Nd,MgO:LiNbO
3
laser emitting at 1094 nm was demonstrated for the first
time. The maximum output power of 1.49 W was obtained at the absorbed
diode pump power of 6.48 W, corresponding to an optical-to-optical
conversion efficiency of about 23%. The slope efficiency was
approximately 25.7%. For applications, an intracavity optical parametric
oscillator (IOPO) pumped by an actively Q-switched Nd,MgO:LiNbO
3
laser
with an acousto-optic modulator (AOM) was realized. An X-cut KTiOPO
4
(KTP) worked as the nonlinear crystal for type II noncritical phase
matching (NCPM). A maximum output power of the signal wavelength at
1630 nm was about 96 mW with a minimum pulse duration of 1.69 ns at an
AOM repetition rate of 5 kHz, giving a peak power of 11.4 kW.
©2015 Optical Society of America
OCIS codes: (140.3380) Laser materials; (140.3530) Lasers, neodymium; (190.4410) Nonlinear
optics, parametric processes; (190.4970) Parametric oscillators and amplifiers.
References and links
1. N. Evlanova, A. Kovalev, V. Koptski, L. Kornienko, A. Prokhorov, and L. Rashkovich, “Stimulated emission of
LiNbO
3
crystals with neodymium impurity,” JETP Lett. 5, 291–292 (1967).
2. L. Johnson and A. Ballman, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys.
40(1), 297–302 (1969).
3. I. Kaminow and L. Stulz, “Nd:LiNbO
3
laser,” IEEE J. Quantum Electron. QE-11(6), 306–308 (1975).
4. V. Dmitriev, E. Raevskii, N. Rubina, L. Rashkovich, O. Silichev, and A. Fomichev, “Simultaneous emission at
the fundamental frequency and the second harmonic in an active nonlinear medium: neodymium-doped lithium
metaniobate,” Sov. Tech. Phys. Lett. 4, 590 (1979).
5. T. Fan, A. Cordova-Plaza, M. Digonnet, R. Byer, and H. Shaw, “Nd:MgO:LiNbO
3
spectroscopy and laser
devices,” J. Opt. Soc. Am. B 3(1), 140–148 (1986).
6. A. Cordova-Plaza, T. Y. Fan, M. J. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO
3
continuous-wave
laser pumped by a laser diode,” Opt. Lett. 13(3), 209–211 (1988).
7. N. MacKinnon, C. Norrie, and B. Sinclair, “Laser-diode-pumped, electro-optically tunable Nd:MgO:LiNbO
3
microchip laser,” J. Opt. Soc. Am. B 11(3), 519–522 (1994).
8. G. Laptev, A. Novikov, A. Chirkin, V. Firsov, and N. Kravtsov, “Intracavity quasi-phasematched self-frequency
doubling and halving in periodically poled Nd:Mg:LiNbO
3
,” Proc. SPIE 4268, 24–35 (2001).
9. T. Fan and R. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
10. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of
output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
11. N. W. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped
continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
12. C. Brandt, V. Matrosov, K. Petermann, and G. Huber, “In-band fiber-laser-pumped Er:YVO₄ laser emitting
around 1.6 μm,” Opt. Lett. 36(7), 1188–1190 (2011).
13. L. Zhu, M. Wang, J. Zhou, and W. Chen, “Efficient 1645 nm continuous-wave and Q-switched Er:YAG laser
pumped by 1532 nm narrow-band laser diode,” Opt. Express 19(27), 26810–26815 (2011).
14. M. Wang, L. Zhu, W. Chen, and D. Fan, “High-energy directly diode-pumped Q-switched 1617 nm Er:YAG
laser at room temperature,” Opt. Lett. 37(17), 3732–3734 (2012).
15. V. Fromzel, N. Ter-Gabrielyan, and M. Dubinskii, “Acousto-optically Q-switched, resonantly pumped, Er:YVO
4
laser,” Opt. Express 21(13), 15253–15258 (2013).
Received 20 Jan 2015; revised 27 Feb 2015; accepted 27 Feb 2015; published 4 Mar 2015
1 Mar 2015 | Vol. 5, No. 3 | DOI:10.1364/OME.5.000684 | OPTICAL MATERIALS EXPRESS 684