聚类算法在人脸识别中的应用探索

6 下载量 13 浏览量 更新于2024-09-01 收藏 175KB PDF 举报
"基于聚类算法人脸识别方法的研究" 本文主要探讨了在人脸识别技术中的应用,特别是在智能小区和楼宇安防系统中的实用性。人脸识别技术因其独特的优点,如非接触性、易于特征提取和高防伪性,已经在多个领域得到了广泛应用。它结合了多种技术,如计算机、通信、光学、电子和机械,为智能建筑和控制系统提供了创新解决方案。 文章的核心在于研究基于聚类算法的人脸图像识别方法。在处理图像分块的人脸识别过程中,随着分块数量的增加,会面临如何选择子图像保留的奇异值个数、控制维数以及合理分配子图像权重的挑战。这些参数的设置如果仅依赖主观经验,可能会缺乏科学依据。为了解决这一问题,作者提出了使用径向基函数(RBF)神经网络。 RBF网络作为一种高效的三层前馈神经网络,具备全局逼近能力,并且在训练过程中有较快的收敛速度。在网络结构中,RBF函数在隐含层的响应具有局部性的特点,这与生物神经系统的特性相吻合。在确定了隐含层中心后,RBF网络只需要学习调整从隐含层到输出层的单一权重层,简化了学习过程。 为了验证和优化算法,实验使用了YALE人脸数据库,并通过RBF网络进行了多项参数测试,包括奇异值个数、子图像数目、特征值数量、聚类因数、聚类个数等。这些测试结果为人脸识别提供了客观的指导,有助于提升识别的准确性和效率。 此外,文章还讨论了RBF神经网络的初始化过程,特别是隐含层聚类的设置。初始阶段,隐含层节点的数量被设定为输出层的节点数,这样可以确保每个类别在理论上都能收敛到一个聚类中心。这个初始化策略是聚类算法有效运行的基础。 通过相关参数的仿真实验,文章为深入研究子图像的赋值策略提供了理论支持,以期进一步提高人脸识别的速度和精度。这种基于聚类算法的方法不仅适用于智能门禁系统,也为未来人脸识别技术的发展和优化提供了新的思路。
1453 浏览量
Abstract—Clustering face images according to their latent identity has two important applications: (i) grouping a collection of face images when no external labels are associated with images, and (ii) indexing for efficient large scale face retrieval. The clustering problem is composed of two key parts: representation and similarity metric for face images, and choice of the partition algorithm. We first propose a representation based on ResNet, which has been shown to perform very well in image classification problems. Given this representation, we design a clustering algorithm, Conditional Pairwise Clustering (ConPaC), which directly estimates the adjacency matrix only based on the similarities between face images. This allows a dynamic selection of number of clusters and retains pairwise similarities between faces. ConPaC formulates the clustering problem as a Conditional Random Field (CRF) model and uses Loopy Belief Propagation to find an approximate solution for maximizing the posterior probability of the adjacency matrix. Experimental results on two benchmark face datasets (LFW and IJB-B) show that ConPaC outperforms well known clustering algorithms such as k-means, spectral clustering and approximate Rank-order. Additionally, our algorithm can naturally incorporate pairwise constraints to work in a semi-supervised way that leads to improved clustering performance. We also propose an k-NN variant of ConPaC, which has a linear time complexity given a k-NN graph, suitable for large datasets. Index Terms—face clustering, face representation, Conditional Random Fields, pairwise constraints, semi-supervised clustering.