机器学习驱动的高效XSS漏洞检测技术
76 浏览量
更新于2024-09-05
收藏 780KB PDF 举报
"基于机器学习的XSS检测技术"
在网络安全领域,跨站脚本(XSS)漏洞是一种常见的攻击手段,它允许攻击者通过注入恶意脚本到网页中,进而获取用户敏感信息或操纵用户行为。传统的XSS检测方法主要依赖于索引爬虫,这种检测方式通常效率较低且准确性不足,无法及时有效地发现复杂的XSS漏洞。
针对这一问题,"基于机器学习的XSS检测技术"提出了一种创新的解决方案。该技术利用机器学习算法来自动化生成和优化XSS攻击向量,这有助于更精确地模拟潜在的攻击行为,提高检测的覆盖率。具体来说,机器学习模型可以学习并理解XSS攻击的模式,从而生成更具针对性的测试用例,减少无效的测试和误报。
在检测过程中,文章中提到的自动化交互方法能够模拟用户与WEB应用系统的交互,以此来触发可能的XSS漏洞。这种方式比传统静态和动态分析更灵活,能更好地模拟真实世界中的攻击场景。此外,XPath路径定位技术的应用则在分析检测结果时起到了关键作用。XPath是一种在XML文档中查找信息的语言,它能精确定位HTML元素,帮助识别出导致XSS漏洞的特定代码位置。
通过与业界知名的AppScan等工具的检测结果进行比较,这项基于机器学习的XSS检测方法展现出了更高的检测效率。这意味着它能在较短的时间内发现更多的XSS漏洞,对于保护WEB应用的安全性具有显著的优势。
关键词涉及的网络空间安全、XSS漏洞、决策树、精英选择策略和XPath路径定位技术,都是该研究的核心内容。其中,决策树是机器学习中常用的一种分类模型,用于构建攻击向量的生成规则;精英选择策略可能是指在进化算法中保留优秀个体的策略,以加速模型的收敛和优化;XPath路径定位技术则在后处理阶段帮助精确定位漏洞源。
总结来说,这篇论文提出的基于机器学习的XSS检测技术,通过引入智能的攻击向量生成和高效的交互测试,以及精确的XPath分析,提升了XSS漏洞检测的效率和准确性,为WEB应用的安全防护提供了新的思路和技术支持。
2021-10-25 上传
2021-09-24 上传
287 浏览量
2025-03-01 上传
2024-04-25 上传
184 浏览量
153 浏览量
2024-03-30 上传
159 浏览量

weixin_38732842
- 粉丝: 4
最新资源
- Avogadro:跨平台分子编辑器的开源实力
- 冰点文库下载工具Fish-v327-0221功能介绍
- 如何在Android手机上遍历应用程序并显示详细信息
- 灰色极简风格的html5项目资源包
- ISD1820语音模块详细介绍与电路应用
- ICM-20602 6轴MEMS运动追踪器英文数据手册
- 嵌入式学习必备:Linux公社问答精华
- Fry: Ruby环境管理的简化解决方案
- SimpleAuth:.Net平台的身份验证解决方案和Rest API调用集成
- Linux环境下WTRP MAC层协议的C代码实现分析
- 响应式企业网站模板及多技术项目源码包下载
- Struts2.3.20版发布,迅速获取最新稳定更新
- Swift高性能波纹动画实现与核心组件解析
- Splash:Swift语言的快速、轻量级语法高亮工具
- React Flip Toolkit:实现高效动画和布局转换的新一代库
- 解决Windows系统Office安装错误的i386 FP40EXT文件指南