C++对象模型深度剖析:编码效率与理解提升

5星 · 超过95%的资源 需积分: 25 437 下载量 122 浏览量 更新于2024-07-23 15 收藏 1.04MB PDF 举报
"《Inside The C++ Object Model》是一本深度剖析C++对象模型的高级专业书籍,专为那些已经掌握C++基础知识的开发者设计。作者深入探讨了支持面向对象编程的核心机制,如构造函数语义、临时对象生成、封装、继承,特别是“虚拟”特性——虚函数和虚继承。这本书旨在帮助读者理解底层实现原理,从而在编码时更加高效且充满信心。 书中揭示了关于C++的一些常见误解和复杂性的真相,指出其中的成本与权衡,有时这些是在编码过程中不易察觉的。作者解释了各种实现模型的发展历程,分析它们为何形成,并指出可能的未来演变方向。此外,书中还详细阐述了C++对象模型的语义含义,以及这个模型如何直接或间接地影响程序员编写的程序性能。 本书亮点包括: 1. 深入研究C++对象模型中隐含的面向对象编程行为,揭示其内在逻辑。 2. 解构并解释了面向对象特性的基本实现,剖析了这些特性背后的实际成本和优化空间。 3. 通过实例分析,探讨了这些机制对程序性能的影响,尤其是在代码转换和优化过程中可能产生的性能差异。 4. 提供实用的策略,帮助开发者在理解和利用C++对象模型时做出明智的设计决策,以提高代码质量和性能。 阅读《Inside The C++ Object Model》,读者不仅能够深化对C++语言的理解,还能提升问题解决能力和对复杂系统架构的掌控力。无论你是经验丰富的C++开发者还是希望深入学习此领域的初学者,这都是一本不可或缺的参考书籍,它将带你探索C++世界的深处,揭示隐藏在代码背后的奥秘。"

帮我写出以下java代码:Add a class Bubble that extends Shape. The Bubble class has an instance variable called radius of type double that represents the radius of the bubble. The constructor of the Bubble class takes an x and a y as arguments, which represent the position of the new bubble. The radius of a new bubble is always 10 and never changes after that. The isVisible method indicates whether the bubble is currently visible inside a window of width w and height h (position (0, 0) is in the upper-left corner of the window). The bubble is considered visible if at least one pixel of the bubble is visible. Therefore a bubble might be visible even when its center is outside the window, as long as the edge of the bubble is still visible inside the window. The code of the isVisible method is a little bit complex, mostly because of the case where the center of the circle is just outside one of the corners of the window. So here is the code of the isVisible method, which you can directly copy-paste into your assignment: // Find the point (wx, wy) inside the window which is closest to the // center (x, y) of the circle. In other words, find the wx in the // interval [0, w - 1] which is closest to x, and find the wy in the // interval [0, h - 1] which is closest to y. // If the distance between (wx, wy) and (x, y) is less than the radius // of the circle (using Pythagoras's theorem) then at least part of // the circle is visible in the window. // Note: if the center of the circle is inside the window, then (wx, wy) // is the same as (x, y), and the distance is 0. public boolean isVisible(int w, int h) { double x = getX(); double y = getY(); double wx = (x < 0 ? 0 : (x > w - 1 ? w - 1 : x)); double wy = (y < 0 ? 0 : (y > h - 1 ? h - 1 : y)); double dx = wx - x; double dy = wy - y; return dx * dx + dy * dy <= radius * radius; } The isIn method indicates whether the point at coordinates (x, y) (which are the arguments of the method) is currently inside the bubble or not. The edge of the bubble counts as being inside of the bubble. HINT: use Pythagoras's theorem to compute the distance from the center of the bubble to the point (x, y). The draw method uses the graphics object g to draw the bubble. HINT: remember that the color of the graphics object g is changed in the draw method of the superclass of Bubble. Also add a testBubble method to test all your methods (including inherited methods, but excluding the isVisible method, which I provide, and excluding the draw method since it requires as argument a graphics object g that you

2023-05-22 上传