深度学习入门:GLUON教程实践
需积分: 14 193 浏览量
更新于2024-07-15
收藏 26.42MB PDF 举报
"GLUON动手学深度学习"
本文档是关于深度学习的教程,特别关注MXNet框架中的Gluon库。教程旨在帮助初学者理解深度学习的基本概念,并提供实践操作指导。文档覆盖了从预备知识到深度学习的各种核心概念和技术,包括机器学习基础、深度学习基础、深度学习计算、卷积神经网络和循环神经网络。
1. 预备知识部分介绍了机器学习的基本概念,如监督学习和无监督学习,并提供了安装和运行MXNet及Gluon的指南。此外,还讲解了如何进行数据操作以及自动求梯度的重要性,这是训练神经网络的基础。
2. 深度学习基础章节详细解释了单层神经网络、线性回归和Softmax回归,这些都是深度学习入门的基础。通过从零开始构建这些模型,读者可以深入理解其工作原理。接着,介绍了多层神经网络和多层感知机,探讨了欠拟合和过拟合的概念,以及如何通过正则化来解决这些问题。此外,还讲解了丢弃法以减少过拟合,以及正向传播和反向传播在训练过程中的作用。
3. 深度学习计算部分涉及模型构造、参数管理、自定义层的创建,以及如何利用GPU加速计算。教程还涵盖了模型的存储和加载,这对于模型的持久化和后续的微调至关重要。
4. 卷积神经网络(CNN)章节详细阐述了二维卷积层、填充和步幅、多输入和输出通道,以及池化层。还介绍了经典的CNN架构,如AlexNet、VGG、NiN和GoogLeNet,以及批量归一化和残差网络(ResNet)。最后,探讨了DenseNet这种密集连接的网络结构。
5. 循环神经网络(RNN)部分介绍了RNN在处理序列数据,如自然语言时的应用。讲解了基本的RNN结构,通过时间反向传播(BPTT)的学习过程,以及更先进的门控单元,如GRU和LSTM,它们解决了传统RNN的长期依赖问题。
这份教程为深度学习初学者提供了一个全面且实践性强的学习路径,通过Gluon库,使得理论与实践相结合,有助于快速掌握深度学习的核心技术和应用。无论是对机器学习的初步理解,还是对深度学习模型的构建和优化,都能在本教程中找到详尽的解答。
2022-02-09 上传
2021-07-18 上传
2022-08-03 上传
2022-08-03 上传
2022-08-03 上传
2022-03-31 上传
2021-03-28 上传
2021-10-01 上传
hlsghhz
- 粉丝: 0
- 资源: 4
最新资源
- Aspose资源包:转PDF无水印学习工具
- Go语言控制台输入输出操作教程
- 红外遥控报警器原理及应用详解下载
- 控制卷筒纸侧面位置的先进装置技术解析
- 易语言加解密例程源码详解与实践
- SpringMVC客户管理系统:Hibernate与Bootstrap集成实践
- 深入理解JavaScript Set与WeakSet的使用
- 深入解析接收存储及发送装置的广播技术方法
- zyString模块1.0源码公开-易语言编程利器
- Android记分板UI设计:SimpleScoreboard的简洁与高效
- 量子网格列设置存储组件:开源解决方案
- 全面技术源码合集:CcVita Php Check v1.1
- 中军创易语言抢购软件:付款功能解析
- Python手动实现图像滤波教程
- MATLAB源代码实现基于DFT的量子传输分析
- 开源程序Hukoch.exe:简化食谱管理与导入功能