神经网络优化的可见光通信接收系统:降低误码率与码间干扰
188 浏览量
更新于2024-08-27
2
收藏 3.2MB PDF 举报
"基于神经网络的可见光通信接收系统的研究"
本文主要探讨了在可见光通信(VLC)领域,如何利用人工神经元网络(ANN)来解决码间干扰(Inter Symbol Interference, ISI)问题,从而提高系统的性能。可见光通信是一种利用可见光谱进行数据传输的技术,具有高速、安全和无需额外频谱等优点,但其面临的挑战之一是码间干扰,这会显著增加误码率(Bit Error Rate, BER),降低通信质量。
针对这一问题,作者提出了一种基于ANN的接收系统,该系统采用了角度分集接收技术。角度分集是一种信号处理方法,通过在不同角度接收信号来增强信号的多样性,从而减少干扰的影响。在该系统中,多组来自不同角度的信号被神经网络接收并处理。神经网络作为一个强大的非线性模型,能够学习并适应信号的各种复杂特性,对数据进行优化合并,生成最终的输出信号。
在Matlab环境下进行的仿真结果显示,这种基于ANN的分集接收系统相比传统的单输入单输出(SISO)系统,能更有效地降低误码率,并减轻码间干扰的影响。即使在相同的信源和环境信噪比条件下,该系统的误码率也显著低于SISO系统,这意味着通信的可靠性得到了显著提高。
此外,通过神经网络的均衡处理,该系统能够优化VLC的信道性能,这对于未来VLC技术在室内通信、智能照明和无线传感器网络等领域的广泛应用具有重要的意义。这项研究为可见光通信提供了一个新的解决方案,利用神经网络技术增强了系统对抗码间干扰的能力,为VLC的进一步发展奠定了理论基础。
2021-09-19 上传
2021-09-20 上传
点击了解资源详情
2023-02-23 上传
2021-09-18 上传
2021-09-18 上传
weixin_38622983
- 粉丝: 5
- 资源: 959
最新资源
- R语言中workflows包的建模工作流程解析
- Vue统计工具项目配置与开发指南
- 基于Spearman相关性的协同过滤推荐引擎分析
- Git基础教程:掌握版本控制精髓
- RISCBoy: 探索开源便携游戏机的设计与实现
- iOS截图功能案例:TKImageView源码分析
- knowhow-shell: 基于脚本自动化作业的完整tty解释器
- 2011版Flash幻灯片管理系统:多格式图片支持
- Khuli-Hawa计划:城市空气质量与噪音水平记录
- D3-charts:轻松定制笛卡尔图表与动态更新功能
- 红酒品质数据集深度分析与应用
- BlueUtils: 经典蓝牙操作全流程封装库的介绍
- Typeout:简化文本到HTML的转换工具介绍与使用
- LeetCode动态规划面试题494解法精讲
- Android开发中RxJava与Retrofit的网络请求封装实践
- React-Webpack沙箱环境搭建与配置指南