神经网络优化的可见光通信接收系统:降低误码率与码间干扰

6 下载量 7 浏览量 更新于2024-08-27 2 收藏 3.2MB PDF 举报
"基于神经网络的可见光通信接收系统的研究" 本文主要探讨了在可见光通信(VLC)领域,如何利用人工神经元网络(ANN)来解决码间干扰(Inter Symbol Interference, ISI)问题,从而提高系统的性能。可见光通信是一种利用可见光谱进行数据传输的技术,具有高速、安全和无需额外频谱等优点,但其面临的挑战之一是码间干扰,这会显著增加误码率(Bit Error Rate, BER),降低通信质量。 针对这一问题,作者提出了一种基于ANN的接收系统,该系统采用了角度分集接收技术。角度分集是一种信号处理方法,通过在不同角度接收信号来增强信号的多样性,从而减少干扰的影响。在该系统中,多组来自不同角度的信号被神经网络接收并处理。神经网络作为一个强大的非线性模型,能够学习并适应信号的各种复杂特性,对数据进行优化合并,生成最终的输出信号。 在Matlab环境下进行的仿真结果显示,这种基于ANN的分集接收系统相比传统的单输入单输出(SISO)系统,能更有效地降低误码率,并减轻码间干扰的影响。即使在相同的信源和环境信噪比条件下,该系统的误码率也显著低于SISO系统,这意味着通信的可靠性得到了显著提高。 此外,通过神经网络的均衡处理,该系统能够优化VLC的信道性能,这对于未来VLC技术在室内通信、智能照明和无线传感器网络等领域的广泛应用具有重要的意义。这项研究为可见光通信提供了一个新的解决方案,利用神经网络技术增强了系统对抗码间干扰的能力,为VLC的进一步发展奠定了理论基础。